Seria: Wykłady

Systemy elektroenergetyczne

Wykład 7

Obliczenia rozpływowe

Autor:

dr inż. Zbigniew Zdun † dr inż. Krzysztof Księżyk mgr inż. Tomasz Zdun

Warszawa, 2020

Spis treści

1. Obliczenie rozpływowe	
1.1. Wyznaczanie rozpływów mocy - sformułowanie zadania	4
2. Metoda Newtona-Raphsona rozwiązywania równań sieciowych	
2.1. Sieć przykładowa	10
2.2. Przykład obliczeń wg algorytmu Newtona-Raphsona	
3. Metoda rozłączna Stotta	
3.1. Przykład obliczeń wg algorytmu metody rozłącznej	
4. Metoda stałoprądowa	
4.1. Przykład obliczeń wg algorytmu metody stałoprądowej	
5. Metoda Warda-Hale'a	
5.1. Przykład obliczeń metodą Warda-Hale'a	
6. Metoda Gaussa-Seidla	
6.1. Przykład obliczeń metodą Gaussa-Seidla	

1. Obliczenie rozpływowe

1.1. Wyznaczanie rozpływów mocy - sformułowanie zadania

Obliczenia rozpływów mocy polegają przede wszystkim na określeniu napięć węzłowych dla zadanych wymuszeń w postaci mocy węzłowych zasilań i odbiorów sieci przesyłowej. Z równań mocowo-napięciowych sieci wynika, że w każdym węźle występują cztery zmienne: $P, Q, |U|, \delta$, przy czym dwie z nich mogą być traktowane jako zmienne niezależne czyli wymuszenia o zadanych wartościach, a pozostałe dwie jako zmienne zależne czyli niewiadome. W praktyce przyjmuje się, że wymuszeniami w węzłach odbiorowych są moce czynne i bierne, a w węzłach elektrownianych wymuszeniami są moc czynna i moduł napięcia. Ponadto należy przyjąć, że w jednym z węzłów kąt fazowy napięcia jest zadany - jest to tak zwany węzeł bilansujący o wymuszeniu w postaci modułu i kąta fazowego napięcia. W tabeli 1.1 przedstawiono podział węzłów na różne typy wraz z wykazem zadanych wymuszeń i zmiennych zależnych, oznaczonych znakiem zapytania - zmiennych, których należy obliczyć.

Rys 1.1. Model węzła sieci przesyłowej

Tab.1.1.Typy węzłów w obliczeniach rozpływowych

Typ węzła	Oznaczenie		/ <u>U</u> /	δ	Р	Q
Węzeł odbiorczy	PQ	1	?	?	zadane	zadane
Węzeł elektrowniany	PV	2	zadane	?	zadane	?
Węzeł bilansujący	Bil.	4	zadane	zadane	?	?

Celem programów wyznaczania rozpływów mocy jest określenie wszystkich czterech wielkości $|\underline{U}|$, δ , P, Q w każdym węźle oraz obliczenie prądów i mocy w elementach sieciowych, a także innych wskaźników obciążenia sieci jak na przykład sumarycznych strat mocy w sieci przesyłowej. Istotne są więc zależności pomiędzy napięciami węzłowymi a mocami węzłowymi.

2. Metoda Newtona-Raphsona rozwiązywania równań sieciowych

Jak już wiadomo obliczanie rozpływów mocy polega na rozwiązywaniu nieliniowego układu równań algebraicznych. Z matematycznego punktu widzenia nieliniowy układ równań może być zapisany w następującej postaci:

$$\boldsymbol{F}(\boldsymbol{X}) = \boldsymbol{\boldsymbol{\theta}} \tag{2.1}$$

a po rozwinięciu w szereg Taylora i pominięciu członów stopnia większego niż pierwszy ma postać:

$$F(X) = F(X_0) + \frac{\partial F}{\partial X} \Big|_{X_0} \cdot \Delta \mathbf{X} = \mathbf{0}$$
(2.2)

stąd można wyznaczyć poprawki $\Delta \mathbf{X}$

$$\Delta \boldsymbol{X} = -\boldsymbol{J}^{-1} \big|_{\boldsymbol{X}_0} \boldsymbol{F}(\boldsymbol{X}_0) \tag{2.3}$$

gdzie J oznacza macierz Jakobiego, której elementami są wartości pochodnych równań mocowo-napięciowych sieci względem modułów i kątów fazowych napięć węzłowych. W przypadku równań sieciowych, w których napięcia są przedstawione we współrzędnych biegunowych, macierz J składa się z czterech podmacierzy:

$$\mathbf{J} = \begin{bmatrix} \begin{bmatrix} \frac{\partial P_i}{\partial \delta_j} \end{bmatrix} \begin{bmatrix} \frac{\partial P_i}{\partial u_j} \end{bmatrix} \\ \begin{bmatrix} \frac{\partial Q_i}{\partial \delta_j} \end{bmatrix} \begin{bmatrix} \frac{\partial Q_i}{\partial u_j} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \mathbf{H} \ \mathbf{N} \\ \mathbf{K} \ \mathbf{L} \end{bmatrix}$$
(2.4)

W przypadku obliczania rozpływów mocy metodą Newtona-Raphsona bierze się pod uwagę równania mocowo-napięciowe sieci w postaci biegunowo-algebraicznej:

$$U_{i}^{2}G_{ii} + U_{i}\sum_{j \in N_{i}} U_{j}(G_{ij}\cos\delta_{ij} + B_{ij}\sin\delta_{ij}) - P_{i} = 0$$

$$-U_{i}^{2}B_{ii} + U_{i}\sum_{j \in N_{i}} U_{j} |(G_{ij}\sin\delta_{ij} - B_{ij}\cos\delta_{ij}) - Q_{i} = 0$$

(2.5)

W celu rozwiązania układu (2.5) równań względem U, δ , różniczkuje się je i wprowadza w miejsce różniczek przyrosty:

$$\Delta P_{i} = \frac{\partial P_{i}}{\partial \Delta \delta_{i}} \Delta \delta_{i} + \sum_{j \in N_{i}} \frac{\partial P_{i}}{\partial \Delta \delta_{j}} \Delta \delta_{j} + \frac{\partial P_{i}}{\partial \Delta u_{i}} \Delta u_{i} + \sum_{j \in N_{i}} \frac{\partial P_{i}}{\partial \Delta u_{j}} \Delta u_{j}$$
(2.6)

$$\Delta Q_{i} = \frac{\partial Q_{i}}{\partial \Delta \delta_{i}} \Delta \delta_{i} + \sum_{j \in N_{i}} \frac{\partial Q_{i}}{\partial \Delta \delta_{j}} \Delta \delta_{j} + \frac{\partial Q_{i}}{\partial \Delta u_{i}} \Delta u_{i} + \sum_{j \in N_{i}} \frac{\partial Q_{i}}{\partial \Delta u_{j}} \Delta u_{j}$$
(2.7)

gdzie:

$$\Delta \delta_{i} = \delta_{io} - \delta_{i}, \quad \Delta u_{i} = (U_{io} - U_{i})/U_{io}, \quad \Delta P_{i} = P_{iz} - P_{i}, \quad \Delta Q_{i} = Q_{iz} - Q_{i}$$
(2.8)
czyli $\delta_{i} = \delta_{io} + \Delta \delta_{i}, \quad \text{oraz} \quad U_{i} = U_{io} \cdot (1 + \Delta u_{i})$

Indeks "0" oznacza wartości z punktu startowego lub z kroku poprzedniego, natomiast indeks "z" oznacza zadane wartości mocy.

Pochodne oblicza się w punkcie startowym lub w każdym kroku, różniczkując równania mocy węzłowych (2.9):

$$P_{i} = U_{i}^{2}G_{ii} + U_{i} \sum_{j \in N_{i}} U_{j}(G_{ij} \cos \delta_{ij} + B_{ij} \sin \delta_{ij})$$

$$Q_{i} = -U_{i}^{2}B_{ii} + U_{i} \sum_{j \in N_{i}} U_{j}(G_{ij} \sin \delta_{ij} - B_{ij} \cos \delta_{ij})$$
(2.9)

względem zmiennych $\Delta \delta_i$, Δu_i oraz podstawiając:

$$\delta_i = \delta_{io} - \varDelta \delta_i, \quad U_i = U_{io}(1 - \Delta u_i) \tag{2.10}$$

Pochodna mocy czynnej P_i względem przyrostu względnego $\Delta \delta_j$ po podstawieniu zależności (2.10) do równania mocy czynnej (2.9) obliczania jest na podstawie równania:

$$P_i = U_{io} \cdot U_{jo} \cdot [G_{ij} \cos(\delta_{io} - (\delta_{jo} - \Delta \delta_j) + B_{ij} \sin(\delta_{io} - (\delta_{jo} - \Delta \delta_j))]$$
(2.11)

przy różniczkowaniu należy zauważyć, że pochodna funkcji cosinus jest sinus z minusem a funkcji sinus jest cosinus, stąd:

$$\frac{\partial P_i}{\partial \Delta \delta_j} = U_{io} \cdot U_{jo} \cdot (G_{ij} \sin \delta_{ijo} - B_{ij} \cos \delta_{ijo})$$
(2.12)

Pochodna mocy czynnej P_i względem przyrostu względnego Δu_j po podstawieniu zależności (2.10) do (2.9) obliczania jest na podstawie równania:

$$P_i = U_{io} \cdot U_{jo} (1 + \Delta u_j) \cdot (G_{ij} \cos \delta_{ij} + B_{ij} \sin \delta_{ij})$$
(2.13)

stąd:

$$\frac{\partial P_i}{\partial \Delta u_j} = U_{io} \cdot U_{jo} \cdot (G_{ij} \cos \delta_{ijo} + B_{ij} \sin \delta_{ijo})$$
(2.14)

Pochodna mocy biernej Q_i względem przyrostu względnego $\Delta \delta_j$ po podstawieniu zależności (2.10) do (2.9) obliczania jest na podstawie równania:

$$Q_i = U_{io} \cdot U_{jo} \cdot [G_{ij} \sin(\delta_{io} - (\delta_{jo} + \Delta \delta_j) - B_{ij} \cos(\delta_{io} - (\delta_{jo} + \Delta \delta_j))]$$
(2.15)

stąd:

$$\frac{\partial Q_i}{\partial \Delta \delta_j} = -U_{io} \cdot U_{jo} \cdot (G_{ij} \cos \delta_{ijo} + B_{ij} \sin \delta_{ijo})$$
(2.16)

Pochodna mocy biernej Q_i względem przyrostu względnego Δu_j po podstawieniu zależności (2.10) do (2.9) obliczania jest na podstawie równania:

$$Q_i = U_{io} \cdot U_{jo} (1 - \Delta u_j) \cdot (G_{ij} \sin \delta_{ij} - B_{ij} \cos \delta_{ij})$$
(2.17)

stąd:

$$\frac{\partial Q_i}{\partial \Delta u_j} = U_{io} \cdot U_{jo} \cdot (G_{ij} \sin \delta_{ijo} - B_{ij} \cos \delta_{ij})$$
(2.18)

Mając wzory na pochodne mocy czynnych P_i i biernych Q_i po kątach $\Delta \delta_j$ i przyrostach napięć Δu_j ("wzajemne") łatwo wyprowadzić wzory na elementy własne $\partial P_i / \Delta \delta_i$ oraz $\partial Q_i / \Delta u_i$. Należy zauważyć, że w wzorach na pochodne "własne" będzie występować suma wzajemnych z

przeciwnym znakiem i dodatkowo będą występowały składniki typu: $2U_{io}^{2}G_{ii}$ i $2U_{io}^{2}B_{ii}$.

Ostatecznie otrzymuje się następujący zestaw wzorów na elementy macierzy Jacobiego:

$$\begin{aligned} H_{ij} &= \frac{\partial P_{i}}{\partial \Delta \delta_{j}} = U_{io} U_{jo} (G_{ij} \sin \delta_{ijo} - B_{ij} \cos \delta_{ijo}) \\ H_{ii} &= \frac{\partial P_{i}}{\partial \Delta \delta_{i}} = -\sum_{j \in N_{i}} U_{io} U_{jo} (G_{ij} \sin \delta_{ijo} - B_{ij} \cos \delta_{ijo}) \\ N_{ij} &= \frac{\partial P_{i}}{\partial \Delta u_{j}} = U_{io} U_{jo} (G_{ij} \cos \delta_{ijo} + B_{ij} \sin \delta_{ijo}) \\ N_{ii} &= \frac{\partial P_{i}}{\partial \Delta u_{i}} = 2 U_{io}^{2} G_{ii} + \sum_{j \in N_{i}} U_{io} U_{jo} (G_{ij} \cos \delta_{ijo} + B_{ij} \sin \delta_{ijo}) \\ K_{ij} &= \frac{\partial Q_{i}}{\partial \Delta \delta_{j}} = -U_{io} U_{jo} (G_{ij} \cos \delta_{ijo} + B_{ij} \sin \delta_{ijo}) \\ K_{ii} &= \frac{\partial Q_{i}}{\partial \Delta \delta_{j}} = \sum_{j \in N_{i}} U_{io} U_{jo} (G_{ij} \cos \delta_{ijo} + B_{ij} \sin \delta_{ijo}) \\ L_{ij} &= \frac{\partial Q_{i}}{\partial \Delta u_{j}} = U_{io} U_{jo} (G_{ij} \sin \delta_{ijo} - B_{ij} \cos \delta_{ijo}) \\ L_{ii} &= \frac{\partial Q_{i}}{\partial \Delta u_{i}} = -2U_{io}^{2} B_{ii} + \sum_{j \in N_{i}} U_{io} U_{jo} (G_{ij} \sin \delta_{ijo} - B_{ij} \cos \delta_{ijo}) \end{aligned}$$

przy czym $\delta_{ijo} = \delta_{io} - \delta_{jo}$.

Zlinearyzowane równania mocowo-napięciowe można przedstawić dla wszystkich węzłów sieci w postaci macierzowej:

$$\begin{bmatrix} \Delta P_{1} \\ \Delta P_{2} \\ \vdots \\ \Delta P_{N-1} \\ \Delta Q_{1} \\ \Delta Q_{2} \\ \vdots \\ \Delta Q_{L} \end{bmatrix} = \begin{bmatrix} \mathbf{H} & \mathbf{N} \\ \mathbf{H} & \mathbf{N} \\ \mathbf{K} & \mathbf{L} \\ \mathbf{K} & \mathbf{L} \end{bmatrix} \begin{bmatrix} \Delta \delta_{1} \\ \Delta \delta_{2} \\ \vdots \\ \Delta \delta_{N-1} \\ \Delta u_{1} \\ \Delta u_{2} \\ \vdots \\ \Delta u_{L} \end{bmatrix}$$
(2.20)

W tym równaniu macierzowym występuje N-1 równań związanych z mocami czynnymi P_i węzłów sieci (wszystkich z wyjątkiem węzła bilansującego) oraz L równań związanych z mocami biernymi Q_i węzłów odbiorowych. Zauważmy, że w pierwszym etapie (iteracyjnym) należy obliczyć N-1 kątów fazowych napięć węzłowych (w węźle bilansującym kąt fazowy jest zadany - zwykle równa się 0) oraz należy obliczyć moduły napięć w węzłach odbiorowych (patrz tab.1.1). Zatem kąty fazowe napięć węzłowych oblicza się biorąc pod uwagę równania na moce czynne dla wszytkich węzłów (z wyjątkiem bilansującego), a brakujące moduły napięć oblicza się na podstawie równań mocy biernych w węzłach odbiorowych. Algorytm metody Newtona-Raphsona:

- 1. Dane: topologia i parametry sieci, macierz Y, obciążenia węzłowe.
- 2. Numeruje się węzły sieci w kolejności: węzły odbiorowe, elektrowniane oraz węzeł bilansujący ma numer ostatni.
- 3. Przyjmuje się wstępne (przybliżone) wartości napięć węzłowych krok zerowy.
- 4. Oblicza się niezbilansowania mocy czynnych i biernych w węzłach sieci oblicza się moce węzłowe na podstawie równań $\underline{I}=\underline{Y}\cdot\underline{U}$ oraz $S_i=\underline{U}_i\cdot\underline{I}_i^*$ i odejmuje się je od wartości mocy zadanych. Jeśli niezbilansowania te dla wszystkich węzłów są dostatecznie małe (mniejsze od zadanej dokładności obliczeń ε) to kończy się proces iteracyjny i przechodzi do punktu 8.
- 5. Oblicza się współczynniki macierzy **H**, **N**, **K**, **L** wzory (2.19) pochodnych mocy czynnych i biernych względem kątów i modułów napięć węzłowych.
- 6. Rozwiązuje się liniowy układ równań otrzymując poprawki kątów (radiany) i poprawki względne modułów (kV/kV) napięć węzłowych.
- 7. Koryguje się napięcia węzłowe i wraca się do punktu 3.
- 8. Oblicza się przepływy prądów i mocy oraz straty w elementach sieci przesyłowej i kończy się obliczenia rozpływu mocy przechodzi się do analizy wyników.

Rys 2.1. Schemat blokowy obliczeń wg. metody Newtona-Raphsona

2.1. Sieć przykładowa

Niech dana będzie sieć jak na (*Rys.2.2*), kolor zielony – sieć 220 kV, czerwony - 400kV. Na rysunku tym pokazano pod nazwą linii wartości rezystancji, reaktancji i pojemności linii (B/2), a przy transformatorach wartości R,X oraz przekładni napięciowej. Zaznaczono też kierunki oznaczenia elementów (węzeł początkowy i końcowy) oraz odpowiednią numerację węzłów.

Rys.2.2. Sieć przykładowa

Dalej zamieszczono model tej sieci przesyłowej w postaci tekstowej:

- dane gałęziowe: parametry R, X, B/2 gałęzi i przekładnie transformatorów,
- dane węzłowe: napięcia zadane (Vio, Dio), moce odbierane (Pl, Ql) i generowane (Pg, Qg),
- macierz admitancyjną węzłową,

1.Dane	gałęzı	owe						
Gałąź	Pocz	. Ko	on.	R	Х	BC/2	In	Teta
-	-	-	-	Ohm	Ohm	mkS	A(MVA)	kV/kV
L1	PAK2	14 PLE	5214	3.50	20.00	98.0	780.0	
L2	PAK2	14 KO2	2211	7.00	57.40	196.0	780.0	
L3	PAK2	14 MII	211	8.00	65.60	224.0	780.0	
L4	KOZ2	11 MII	211	13.00	106.60	364.0	950.0	
L5	KOZ2	11 PLE	5214	5.00	41.00	140.0	850.0	
L6	KOZ4	11 MII	411	6.25	82.50	450.0	1466.7	
MIL-T1	MIL4	11 MII	_211	2.30	76.80	0.0	250.0	1.702
KOZ-T1	KOZ4	11 ког	2211	2.30	76.80	0.0	250.0	1.702
2.Dane	węzłow	e						
Węzeł	Тур	Vio	Dio	Pl	Ql	Pg	Qg	
-	-	kV	stopnie	MW	Mvar	MW	Mvar	
MIL211	1	220.00	0.0	-360.00	-140.00	0.00	0.00	
MIL411	1	400.00	0.0	-160.00	-70.00	0.00	0.00	
PLE214	1	220.00	0.0	-280.00	-180.00	0.00	0.00	
KOZ211	2	245.00	0.0	0.00	0.00	450.00	0.00	
KOZ411	2	420.00	0.0	0.00	0.00	200.00	0.00	
PAK214	4	240.00	0.0	0.00	0.00	200.00	0.00	

MIL211 MIL411 PLE214 KOZ211 KOZ411 PAK214 MIL211 0.004088 -0.000663 0.000000 -0.001127 0.000000 -0.001832 -0.061365 0.022143 0.000000 0.009243 0.000000 0.015021 MIL411 -0.000663 0.001303 0.000000 0.000000 -0.000913 0.000000 0.022143 -0.024611 0.000000 0.000000 0.012052 0.000000 0.000000 0.000000 0.011421 -0.002931 0.000000 -0.008490 PLE214 0.000000 0.000000 -0.072309 0.024033 0.000000 0.048514 -0.001127 0.000000 -0.002931 0.007280 -0.000663 -0.002093 KOZ211 0.009243 0.000000 0.024033 -0.087432 0.022143 0.017166 0.000000 -0.000913 0.000000 -0.000663 0.001303 0.000000 KOZ411 0.000000 0.012052 0.000000 0.022143 -0.024611 0.000000 PAK214 -0.001832 0.000000 -0.008490 -0.002093 0.000000 0.012415 0.015021 0.000000 0.048514 0.017166 0.000000 -0.080183

3.Macierz admitancyjna węzłowa

2.2. Przykład obliczeń wg algorytmu Newtona-Raphsona

Krok 1:

- Należy ponumerować odpowiednio węzły w sieci: kolejne numery otrzymują węzły odbiorowe, dalej węzły elektrowniane, a numer ostatni ma węzeł bilansujący jak na (*Rys.2.2*).
- > Przyjmujemy początkowy wektor stanu X napięcia węzłowe:

$$\boldsymbol{X}^{(i=0)} = \begin{bmatrix} \delta_{MIL211} \\ \delta_{MIL411} \\ \delta_{PLE214} \\ \delta_{KOZ211} \\ \delta_{KOZ411} \\ U_{MIL211} \\ U_{MIL411} \\ U_{PLE214} \end{bmatrix} = \begin{bmatrix} 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 220,00 \\ 400,00 \\ 220,00 \end{bmatrix}$$

Obliczamy macierz Jakobiego – pochodnych mocy czynnych i biernych względem kątów i modułów napięć – wzory (2.19) – kilka elementów tej macierzy związanych z węzłem *MIL211*.
 Węzeł *MIL211* jest połączony z węzłem *PAK214* linią *L3* oraz z węzłem *KOZ211* linią *L4*, a

także z węzłem MIL411 transformatorem MIL-T1 jak na (Rys 2.3).

Rys 2.3. Połączenia węzła MIL211

Wiersz macierzy admitancyjnej odpowiadający węzłowi MIL211 jest:

	MIL211	MIL411	PLE214	KOZ211	KOZ411	PAK214
MIL211	0.004088	-0.000663	0.00000	-0.001127	0.00000	-0.001832
	-0.061365	0.022143	0.00000	0.009243	0.00000	0.015021

Pochodne mocy czynnej względem kątów fazowych napięć

$$H_{ij} = \frac{\partial P_i}{\partial \Delta \delta_j} = U_{io} U_{jo} (G_{ij} \sin \delta_{ijo} - B_{ij} \cos \delta_{ijo})$$
$$H_{ii} = \frac{\partial P_i}{\partial \Delta \delta_i} = -\sum_{j \in N_i} U_{io} U_{jo} (G_{ij} \sin \delta_{ijo} - B_{ij} \cos \delta_{ijo})$$

$$\begin{split} H_{ii} &= \frac{\partial P_{MIL211}}{\partial \delta_{MIL211}} = -U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) - B_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) \right] + \\ &- U_{MIL211} \cdot U_{KOZ211} \cdot \left[G_{MIL211,KOZ211} \cdot \sin(\delta_{MIL211} - \delta_{KOZ211}) - B_{MIL211,KOZ211} \cdot \cos(\delta_{MIL211} - \delta_{KOZ211}) \right] + \\ &- U_{MIL211} \cdot U_{PAK214} \cdot \left[G_{MIL211,PAK214} \cdot \sin(\delta_{MIL211} - \delta_{PAK214}) - B_{MIL211,PAK214} \cdot \cos(\delta_{MIL211} - \delta_{PAK214}) \right] = \\ &= -220,00 \cdot 400,00 \cdot \left[-0,000663 \cdot \sin(0,00 - 0,00) - 0,022143 \cdot \cos(0,00 - 0,00) \right] + \\ &- 220,00 \cdot 245,00 \cdot \left[-0,001127 \cdot \sin(0,00 - 0,00) - 0,009243 \cdot \cos(0,00 - 0,00) \right] + \\ &- 220,00 \cdot 240,00 \cdot \left[-0,001832 \cdot \sin(0,00 - 0,00) - 0,015021 \cdot \cos(0,00 - 0,00) \right] = \\ &= 1948,6 + 498,2 + 793,1 = 3239,9 \end{split}$$

$$H_{ij} = \frac{\partial P_{MIL211}}{\partial \delta_{MIL411}} = U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) - B_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) \right] = 220,00 \cdot 400,00 \cdot \left[-0,000663 \cdot \sin(0,00 - 0,00) - 0,022143 \cdot \cos(0,00 - 0,00) \right] = -1948,6$$

$$H_{ji} = \frac{\partial P_{MIL411}}{\partial \delta_{MIL211}} = U_{MIL411} \cdot U_{MIL211} \cdot \left[G_{MIL411,MIL211} \cdot \sin(\delta_{MIL411} - \delta_{MIL211}) - B_{MIL411,MIL211} \cdot \cos(\delta_{MIL411} - \delta_{MIL211}) \right] = 400,00 \cdot 220,00 \cdot \left[-0,000663 \cdot \sin(0,00 - 0,00) - 0,022143 \cdot \cos(0,00 - 0,00) \right] = -1948,6$$

Pochodne mocy biernej względem kątów fazowych napięć

$$K_{ij} = \frac{\partial Q_i}{\partial \Delta \delta_j} = -U_{io} U_{jo} (G_{ij} \cos \delta_{ijo} + B_{ij} \sin \delta_{ijo})$$

$$K_{ii} = \frac{\partial Q_i}{\partial \Delta \delta_i} = \sum_{j \in N_i} U_{io} U_{jo} (G_{ij} \cos \delta_{ijo} + B_{ij} \sin \delta_{ijo})$$

$$\begin{split} K_{ii} &= \frac{\partial Q_{MIL211}}{\partial \delta_{MIL211}} = U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) + B_{MIL211,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) \right] + \\ &+ U_{MIL211} \cdot U_{KOZ211} \cdot \left[G_{MIL211,KOZ211} \cdot \cos(\delta_{MIL211} - \delta_{KOZ211}) + B_{MIL211,KOZ211} \cdot \sin(\delta_{MIL211} - \delta_{KOZ211}) \right] + \\ &+ U_{MIL211} \cdot U_{PAK214} \cdot \left[G_{MIL211,PAK214} \cdot \cos(\delta_{MIL211} - \delta_{PAK214}) + B_{MIL211,PAK214} \cdot \sin(\delta_{MIL211} - \delta_{PAK214}) \right] = \\ &= 220,00 \cdot 400,00 \cdot \left[-0,000663 \cdot \cos(0,00 - 0,00) + 0,022143 \cdot \sin(0,00 - 0,00) \right] + \\ &+ 220,00 \cdot 245,00 \cdot \left[-0,001127 \cdot \cos(0,00 - 0,00) + 0,009243 \cdot \cos(0,00 - 0,00) \right] + \\ &+ 220,00 \cdot 240,00 \cdot \left[-0,001832 \cdot \cos(0,00 - 0,00) + 0,015021 \cdot \cos(0,00 - 0,00) \right] = \\ &= -58,3 - 60,7 - 96,7 = -215,8 \end{split}$$

$$K_{ij} = \frac{\partial Q_{MIL211}}{\partial \delta_{MIL411}} = -U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) + B_{MIL21,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) \right] = -220,00 \cdot 400,00 \cdot \left[-0,000663 \cdot \cos(0,00 - 0,00) + 0,022143 \cdot \sin(0,00 - 0,00) \right] = 58,3$$

$$K_{ji} = \frac{\partial Q_{MIL411}}{\partial \delta_{MIL211}} = -U_{MIL411} \cdot U_{MIL211} \cdot \left[G_{MIL411,MIL211} \cdot \cos(\delta_{MIL411} - \delta_{MIL211}) + B_{MIL411,MIL411} \cdot \sin(\delta_{MIL411} - \delta_{MIL211}) \right] = -400,00 \cdot 220,00 \cdot \left[-0,000663 \cdot \cos(0,00 - 0,00) + 0,022143 \cdot \sin(0,00 - 0,00) \right] = 58,3$$

Pochodne mocy czynnej względem modułów fazowych napięć węzłowych:

$$\begin{split} N_{ij} &= \frac{\partial P_i}{\partial \Delta u_j} = U_{io} U_{jo} (G_{ij} \cos \delta_{ijo} + B_{ij} \sin \delta_{ijo}) \\ N_{ii} &= \frac{\partial P_i}{\partial \Delta u_i} = 2 U_{io}^2 G_{ii} + \sum_{j \in N_i} U_{io} U_{jo} (G_{ij} \cos \delta_{ijo} + B_{ij} \sin \delta_{ijo}) \end{split}$$

$$\begin{split} N_{li} &= \frac{\partial Q_{MIL211}}{\partial \delta_{MIL211}} = 2 \cdot U_{MIL211}^2 \cdot G_{MIL211,MIL211} + \\ &+ U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) + B_{MIL211,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) \right] + \\ &+ U_{MIL211} \cdot U_{KOZ211} \cdot \left[G_{MIL211,KOZ211} \cdot \cos(\delta_{MIL211} - \delta_{KOZ211}) + B_{MIL211,KOZ211} \cdot \sin(\delta_{MIL211} - \delta_{KOZ211}) \right] + \\ &+ U_{MIL211} \cdot U_{PAK214} \cdot \left[G_{MIL211,PAK214} \cdot \cos(\delta_{MIL211} - \delta_{PAK214}) + B_{MIL211,PAK214} \cdot \sin(\delta_{MIL211} - \delta_{PAK214}) \right] + \\ &= 2 \cdot 220^2 \cdot 0,004088 + \\ &+ 220,00 \cdot 400,00 \cdot \left[-0,000663 \cdot \cos(0,00 - 0,00) + 0,022143 \cdot \sin(0,00 - 0,00) \right] + \\ &+ 220,00 \cdot 245,00 \cdot \left[-0,001127 \cdot \cos(0,00 - 0,00) + 0,009243 \cdot \cos(0,00 - 0,00) \right] + \\ &+ 220,00 \cdot 240,00 \cdot \left[-0,001832 \cdot \cos(0,00 - 0,00) + 0,015021 \cdot \cos(0,00 - 0,00) \right] = \\ &395,7 - 58,3 - 60,7 - 96,7 + 395,7 = 179,9 \end{split}$$

$$N_{ij} = \frac{\partial Q_{MIL211}}{\partial \delta_{MIL411}} = U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) + B_{MIL21,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) \right] = 220,00 \cdot 400,00 \cdot \left[-0,000663 \cdot \cos(0,00 - 0,00) + 0,022143 \cdot \sin(0,00 - 0,00) \right] = -58,4$$

 $N_{ji} = \frac{\partial Q_{MIL411}}{\partial \delta_{MIL211}} = U_{MIL411} \cdot U_{MIL211} \cdot \left[G_{MIL411,MIL211} \cdot \cos(\delta_{MIL411} - \delta_{MIL211}) + B_{MIL411,MIL411} \cdot \sin(\delta_{MIL411} - \delta_{MIL211}) \right] = 400,00 \cdot 220,00 \cdot \left[-0,000663 \cdot \cos(0,00 - 0,00) + 0,022143 \cdot \sin(0,00 - 0,00) \right] = -58,4$

Wykład 7

Pochodne mocy biernej względem modułów fazowych napięć węzłowych:

$$\begin{split} L_{ij} &= \frac{\partial Q_{i}}{\partial \Delta u_{j}} = U_{io} U_{jo} (G_{ij} \sin \delta_{ijo} - B_{ij} \cos \delta_{ijo}) \\ L_{ii} &= \frac{\partial Q_{i}}{\partial \Delta u_{i}} = -2 U_{io}^{2} B_{ii} + \sum_{j \in N_{i}} U_{io} U_{jo} (G_{ij} \sin \delta_{ijo} - B_{ij} \cos \delta_{ijo}) \\ L_{ii} &= \frac{\partial Q_{ML211}}{\partial U_{ML211}} = -2 \cdot U_{i}^{2} \cdot G_{ii} + \\ &+ U_{ML211} \cdot U_{MIL411} \cdot [G_{MIL211,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) - B_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411})] + \\ &+ U_{MIL211} \cdot U_{MIL411} \cdot [G_{MIL211,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{KO2211}) - B_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{KO2211})] + \\ &+ U_{MIL211} \cdot U_{PAK214} \cdot [G_{MIL211,PAK214} \cdot \sin(\delta_{MIL211} - \delta_{FAK214}) - B_{MIL211,PAK214} \cdot \cos(\delta_{MIL211} - \delta_{FAK214}) +] \\ &= -2 \cdot 220^{2} \cdot 0.004088 + \\ &+ 220,00 \cdot 400,00 \cdot [-0,000663 \cdot \sin(0,00 - 0,00) - 0,022143 \cdot \cos(0,00 - 0,00)] + \\ &+ 220,00 \cdot 245,00 \cdot [-0,001127 \cdot \sin(0,00 - 0,00) - 0,015021 \cdot \cos(0,00 - 0,00)] + \\ &+ 220,00 \cdot 240,00 \cdot [-0,001832 \cdot \sin(0,00 - 0,00) - 0,015021 \cdot \cos(0,00 - 0,00)] = \\ &= 5940,1 - 1948,6 - 498,2 - 793,1 = 2700,2 \end{aligned}$$

Pełna macierz Jakobiego dla sieci jak na (Rys.2.2) i przy zerowym punkcie startowym jest:

	δ_{MIL211}	δ_{MIL411}	δ_{PLE214}	δ_{KOZ211}	δ_{KOZ411}	$\pmb{v}_{\!\scriptscriptstyle MIL211}$	$v_{\rm MIL411}$	$\pmb{v}_{\scriptscriptstyle PLE214}$
P_{MIL211}	3239,9	-1948,6	0,0	-498,2	0,0	179,9	-58,4	0,0
P_{MIL411}	-1948,6	3973,3	0,0	0,0	-2024,7	-58,4	205,1	0,0
P_{PLE214}	0,0	0,0	3856,9	-1295,4	0,0	0,0	0,0	499,3
P_{KOZ211}	-498,2	0,0	-1295,4	5081,5	-2278,5	-60,8	0,0	-158,0
P_{KOZ411}	0,0	-2024,7	0,0	-2278,5	4303,2	0,0	-153,4	0,0
Q _{MIL211}	-215,8	58,4	0,0	60,8	0,0	2700,3	-1948,6	0,0
Q MIL411	58,4	-211,7	0,0	0,0	153,4	-1948,6	3902,3	0,0
Q_{PLE214}	0,0	0,0	-606,2	158,0	0,0	0,0	0,0	3142,6

Wyróżniono podział na cztery podmacierze: H – macierz pochodnych mocy czynnych względem kątów, K – pochodne mocy biernych względem kątów, L – macierz pochodnych mocy czynnych względem modułów napięć węzłowych oraz podmacierz N – pochodne mocy biernych względem modułów napięć. Należy zauważyć, że na przekątnej wartości elementów są największe - macierz jest dobrze uwarunkowana jeśli chodzi o rozwiązywanie układu równań. Ponadto elementy podmacierzy H oraz N są dominujące – wartości elementów podmacierzy K i L są średnio o rząd wielkości mniejsze od wartości elementów H i N. Wynika to z parametrów elektrycznych linii i transformatorów – reaktancje są średni o rząd wielkości większe o rezystancji.

 $L_{ij} =$

Dla przyjętego wektora stanu:

$$\boldsymbol{X}^{(i=0)} = \begin{bmatrix} \delta_{MIL211} \\ \delta_{MIL411} \\ \delta_{PLE214} \\ \delta_{KOZ211} \\ \delta_{KOZ411} \\ U_{MIL211} \\ U_{MIL411} \\ U_{PLE214} \end{bmatrix} = \begin{bmatrix} 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 220,00 \\ 400,00 \\ 220,00 \end{bmatrix}$$

obliczamy moce węzłowe; najpierw prądy z równania $\underline{I} = \underline{Y} \cdot \underline{U}$ a potem

moce $\underline{S}_i = P_i^{obl.} + jP_i^{obl.} = \underline{U}_i \cdot \underline{I}_i^*$ oraz wektor niezbilansowań mocy:

$$\Delta \boldsymbol{P}^{(i=0)} = \begin{bmatrix} P_{MIL211}^{obl.} - P_{MIL211}^{zad.} \\ P_{MIL411}^{obl.} - P_{PLE214}^{zad.} \\ P_{PLE214}^{obl.} - P_{PLE214}^{zad.} \\ P_{KOZ211}^{obl.} - P_{KOZ411}^{zad.} \\ P_{KOZ411}^{obl.} - P_{KOZ411}^{zad.} \\ Q_{MIL211}^{obl.} - Q_{MIL211}^{zad.} \\ Q_{MIL211}^{obl.} - Q_{MIL211}^{zad.} \\ Q_{MIL411}^{obl.} - Q_{MIL411}^{zad.} \\ Q_{PLE214}^{obl.} - Q_{PLE214}^{zad.} \end{bmatrix} = \begin{bmatrix} \Delta P_{MIL211} \\ \Delta P_{MIL211} \\ \Delta P_{KOZ411} \\ \Delta Q_{MIL211} \\ \Delta Q_{MIL211} \\ \Delta Q_{MIL411} \\ \Delta Q_{PLE214} \\ \Delta Q_{PLE214} \end{bmatrix}$$

Tworzymy liniowy układ równań:

	3239,9	-1948,6	0,0	-498,2	0,0	179,9	-58,4	0,0		δ_{MIL211}		-342,02
	-1948,6	3973,3	0,0	0,0	2024,7	-58,4	205,1	0,0		δ_{MIL411}		-156,68
	0,0	0,0	3856,9	-1295,4	0,0	0,0	0,0	499,3		δ_{PLE214}		-226,52
	-498,2	0,0	-1295,4	5081,5	-2278,5	-60,8	0,0	-158,0	•	δ_{KOZ411}	=	423,07
	0,0	-2024,7	0,0	-2278,5	4303,2	0,0	-153,4	0,0		δ_{KOZ211}		191,84
	-215,8	58,4	0,0	60,8	0,0	2700,3	-1948,6	0,0		U_{MIL211}		129,79
	58,4	-211,7	0,0	0,0	153,4	-1948,6	3902,3	0,0		U_{MIL411}		-34,47
	0,0	0,0	-606,2	158,0	0,0	0,0	0,0	3142,6		U_{PLE214}		177,16
_												

którego rozwiązaniem jest:

δ_{MIL211}	-0,147667	stąd nowe wartości napięć węzłowych są:
δ_{MIL411}	-0,087478	$\underline{U}_{MIL211} = (220,00 + 220,00 \cdot 0,041813) \cdot e^{j(0,000 + (-0,14767) \cdot 57,296)} =$
δ_{PLE214}	-0,036851	$= 229,20 \cdot e^{-j8,461}$
δ_{KOZ211}	= 0,082539	$\underline{U}_{MIL411} = (400,00 + 400,00 \cdot 0,007643) \cdot e^{j(0,000 + (-0,087478) \cdot 57,296)} =$
δ_{KOZ411}	0,047396	$= 403,06 \cdot e^{-j5,012}$
U_{MIL211}	0,041813	$\underline{U}_{PLE214} = (220,00 + 220,00 \cdot 0,045116) \cdot e^{j(0,000 + (-0,036851) \cdot 57,296)} =$
U_{MIL411}	0,007643	$= 229,93 \cdot e^{-j2,111}$
U_{PLE214}	0,045116	$\underline{U}_{KOZ211} = 245,00 \cdot e^{j(0,000+0,082539) \cdot 57,296} = 245,000 \cdot e^{j4,729}$
		$\underline{U}_{KOZ411} = 420,00 \cdot e^{j(0,000+0,047396) \cdot 57,296} = 245,000 \cdot e^{j2,716}$
		$\underline{U}_{PAK214} = 240,00 \cdot e^{j0}$

Warto zauważyć, że wynikowe kąty napięć węzłowych są wyrażone w radianach a napięcia to są przyrosty względne napięć odniesione do napięć początkowych,

Krok 2:

> Przyjmujemy początkowy wektor stanu X – napięcia węzłowe:

$$\boldsymbol{X}^{(i=1)} = \begin{bmatrix} \delta_{MIL211} \\ \delta_{MIL411} \\ \delta_{PLE214} \\ \delta_{KOZ211} \\ \delta_{KOZ411} \\ U_{MIL211} \\ U_{MIL411} \\ U_{PLE214} \end{bmatrix} = \begin{bmatrix} -8,461 \\ -5,012 \\ -2,111 \\ 4,729 \\ 2,716 \\ 229,20 \\ 403,06 \\ 229,930 \end{bmatrix}$$

Obliczamy macierz Jakobiego:

Pochodne mocy czynnej względem kątów fazowych napięć

$$\begin{split} H_{ii} &= \frac{\partial P_{MIL211}}{\partial \delta_{MIL211}} = -U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) - B_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) \right] + \\ &- U_{MIL211} \cdot U_{KOZ211} \cdot \left[G_{MIL211,KOZ211} \cdot \sin(\delta_{MIL211} - \delta_{KOZ211}) - B_{MIL211,KOZ211} \cdot \cos(\delta_{MIL211} - \delta_{KOZ211}) \right] + \\ &- U_{MIL211} \cdot U_{PAK214} \cdot \left[G_{MIL211,PAK214} \cdot \sin(\delta_{MIL211} - \delta_{PAK214}) - B_{MIL211,PAK214} \cdot \cos(\delta_{MIL211} - \delta_{PAK214}) \right] = \\ &= -229,20 \cdot 403,06 \cdot \left[-0,000663 \cdot \sin(-8,461 + 5,012) - 0,022143 \cdot \cos(-8,461 + 5,012) \right] + \\ &- 229,20 \cdot 245,00 \cdot \left[-0,001127 \cdot \sin(-8,461 - 4,729) - 0,009243 \cdot \cos(-8,461 - 4,729) \right] + \\ &- 229,20 \cdot 240,00 \cdot \left[-0,001832 \cdot \sin(-8,461 - 0,000) - 0,015021 \cdot \cos(-8,461 - 0,000) \right] = \\ &= 2038,2 + 490,9 + 802,5 = 3331,6 \end{split}$$

$$H_{ij} = \frac{\partial F_{MIL211}}{\partial \delta_{MIL411}} = U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) - B_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) \right] = 229,20 \cdot 403,06 \cdot \left[-0,000663 \cdot \sin(-8,461 + 5,012) - 0,022143 \cdot \cos(-8,461 + 5,012) \right] = -2038,2$$

$$H_{ji} = \frac{\partial P_{MIL411}}{\partial \delta_{MIL211}} = U_{MIL411} \cdot U_{MIL211} \cdot \left[G_{MIL411,MIL211} \cdot \sin(\delta_{MIL411} - \delta_{MIL211}) - B_{MIL411,MIL211} \cdot \cos(\delta_{MIL411} - \delta_{MIL211}) \right] = 403,06 \cdot 229,20 \cdot \left[-0,000663 \cdot \sin(-5,012 + 8,461) - 0,022143 \cdot \cos(-5,012 + 8,461) \right] = -2045,6$$

Pochodne mocy biernej względem kątów fazowych napięć

$$\begin{split} K_{ii} &= \frac{dQ_{MIL211}}{\partial \delta_{MIL211}} = U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) + B_{MIL211,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) \right] + \\ &+ U_{MIL211} \cdot U_{KOZ211} \cdot \left[G_{MIL211,KOZ211} \cdot \cos(\delta_{MIL211} - \delta_{KOZ211}) + B_{MIL211,KOZ211} \cdot \sin(\delta_{MIL211} - \delta_{KOZ211}) \right] + \\ &+ U_{MIL211} \cdot U_{PAK214} \cdot \left[G_{MIL211,PAK214} \cdot \cos(\delta_{MIL211} - \delta_{PAK214}) + B_{MIL211,PAK214} \cdot \sin(\delta_{MIL211} - \delta_{PAK214}) \right] = \\ &= 229,20 \cdot 403,06 \cdot \left[-0,000663 \cdot \cos(-8,461 + 5,012) + 0,022143 \cdot \sin(-8,461 + 5,012) \right] + \\ &+ 229,20 \cdot 245,00 \cdot \left[-0,001127 \cdot \cos(-8,461 - 4,729) + 0,009243 \cdot \cos(-8,461 - 4,729) \right] + \\ &+ 229,20 \cdot 240,00 \cdot \left[-0,001832 \cdot \cos(-8,461 - 0,000) + 0,015021 \cdot \cos(-8,461 - 0,000) \right] = \\ &= -184,2 - 180,0 - 221,3 = -585,5 \end{split}$$

$$K_{ij} = \frac{\partial Q_{MIL211}}{\partial \delta_{MIL411}} = -U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) + B_{MIL21,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) \right] = -229,20 \cdot 403,06 \cdot \left[-0,000663 \cdot \cos(-8,461 + 5,012) + 0,022143 \cdot \sin(-8,461 + 5,012) \right] = 184,2$$

$$K_{ji} = \frac{\partial Q_{MIL411}}{\partial \delta_{MIL211}} = -U_{MIL411} \cdot U_{MIL211} \cdot \left[G_{MIL411,MIL211} \cdot \cos(\delta_{MIL411} - \delta_{MIL211}) - B_{MIL411,MIL211} \cdot \sin(\delta_{MIL411} - \delta_{MIL211}) \right] = -403,06 \cdot 229,20 \cdot \left[-0,000663 \cdot \cos(-5,012 + 8,461) - 0,022143 \cdot \sin(-5,012 + 8,461) \right] = 61,9$$

Pochodne mocy czynnej względem modułów napięć węzłowych:

$$\begin{split} N_{ii} &= \frac{\partial Q_{MIL211}}{\partial \delta_{MIL211}} = 2 \cdot U_{MIL211}^2 \cdot G_{MIL211,MIL211} + \\ &+ U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) + B_{MIL211,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) \right] + \\ &+ U_{MIL211} \cdot U_{KOZ211} \cdot \left[G_{MIL211,KOZ211} \cdot \cos(\delta_{MIL211} - \delta_{KOZ211}) + B_{MIL211,KOZ211} \cdot \sin(\delta_{MIL211} - \delta_{KOZ211}) \right] + \\ &+ U_{MIL211} \cdot U_{PAK214} \cdot \left[G_{MIL211,PAK214} \cdot \cos(\delta_{MIL211} - \delta_{PAK214}) + B_{MIL211,PAK214} \cdot \sin(\delta_{MIL211} - \delta_{PAK214}) \right] + \\ &= 2 \cdot 229,20^2 \cdot 0,004088 + \\ &- 229,20 \cdot 403,06 \cdot \left[-0,000663 \cdot \cos(-8,461 + 5,012) + 0,022143 \cdot \sin(-8,461 + 5,012) \right] + \\ &- 229,20 \cdot 245,00 \cdot \left[-0,001127 \cdot \cos(-8,461 - 4,729) + 0,009243 \cdot \cos(-8,461 - 4,729) \right] + \\ &- 229,20 \cdot 240,00 \cdot \left[-0,001832 \cdot \cos(-8,461 - 0,000) + 0,015021 \cdot \cos(-8,461 - 0,000) \right] = \\ &+ 429,5 - 184,2 - 180,0 - 221,3 = -156,0 \end{split}$$

$$N_{ij} = \frac{\delta Q_{MIL211}}{\delta \delta_{MIL411}} = U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) + B_{MIL21,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) \right] = 229,20 \cdot 403,06 \cdot \left[-0,000663 \cdot \cos(-8,461 + 5,012) + 0,022143 \cdot \sin(-8,461 + 5,012) \right] = -184,2$$

$$N_{ji} = \frac{\partial Q_{MIL411}}{\partial \delta_{MIL211}} = U_{MIL411} \cdot U_{MIL211} \cdot \left[G_{MIL411,MIL211} \cdot \cos(\delta_{MIL411} - \delta_{MIL211}) + B_{MIL411,MIL211} \cdot \sin(\delta_{MIL411} - \delta_{MIL211}) \right] = 403,06 \cdot 229,20 \cdot \left[-0,000663 \cdot \cos(-5,012 + 8,461) + 0,022143 \cdot \sin(-5,012 + 8,461) \right] = 61,9$$

Pochodne mocy biernej względem modułów napięć węzłowych:

$$\begin{split} L_{ii} &= \frac{\partial Q_{MIL211}}{\partial U_{MIL211}} = -2 \cdot U_i^2 \cdot G_{ii} + \\ &+ U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) - B_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) \right] + \\ &+ U_{MIL211} \cdot U_{KOZ211} \cdot \left[G_{MIL211,KOZ211} \cdot \sin(\delta_{MIL211} - \delta_{KOZ211}) - B_{MIL211,KOZ211} \cdot \cos(\delta_{MIL211} - \delta_{KOZ211}) \right] + \\ &+ U_{MIL211} \cdot U_{PAK214} \cdot \left[G_{MIL211,PAK214} \cdot \sin(\delta_{MIL211} - \delta_{PAK214}) - B_{MIL211,PAK214} \cdot \cos(\delta_{MIL211} - \delta_{PAK214}) \right] = \\ &= -2 \cdot 229,20^2 \cdot 0,004088 + \\ &+ 229,20 \cdot 403,06 \cdot \left[-0,000663 \cdot \sin(-8,461 + 5,012) - 0,022143 \cdot \cos(-8,461 + 5,012) \right] + \\ &+ 229,20 \cdot 245,00 \cdot \left[-0,001127 \cdot \sin(-8,461 - 4,729) - 0,009243 \cdot \cos(-8,461 - 4,729) \right] + \\ &+ 229,20 \cdot 240,00 \cdot \left[-0,001832 \cdot \sin(-8,461 - 0,00) - 0,015021 \cdot \cos(-8,461 - 0,00) \right] = \\ &= 6447,3 - 2038,2 - 490,9 - 802,5 = 3115,8 \end{split}$$

$$L_{ij} = \frac{\partial Q_{MIL211}}{\partial U_{MIL411}} = U_{MIL211} \cdot U_{MIL411} \cdot \left[G_{MIL211,MIL411} \cdot \sin(\delta_{MIL211} - \delta_{MIL411}) - B_{MIL211,MIL411} \cdot \cos(\delta_{MIL211} - \delta_{MIL411}) \right] = 229,20 \cdot 403,06 \cdot \left[-0,000663 \cdot \sin(-8,461 + 5,012) - 0,022143 \cdot \cos(-8,461 + 5,012) \right] = -2038,2$$

$$L_{ji} = \frac{\partial Q_{MIL411}}{\partial U_{MIL211}} = U_{MIL411} \cdot U_{MIL211} \cdot \left[G_{MIL411,MIL211} \cdot \sin(\delta_{MIL411} - \delta_{MIL211}) - B_{MIL411,MIL211} \cdot \cos(\delta_{MIL411} - \delta_{MIL211}) \right] = 403,06 \cdot 229,20 \cdot \left[-0,000663 \cdot \sin(-5,012 + 8,461) - 0,022143 \cdot \cos(-5,012 + 8,461) \right] = -2045,6$$

Pełna macierz Jakobiego dla sieci jak na (*Błąd! Nie można odnaleźć źródła odwołania.*) i przy nowym punkcie startowym jest:

	δ_{MIL211}	δ_{MIL411}	δ_{PLE214}	δ_{KOZ211}	δ_{KOZ411}	_	$v_{\rm MIL211}$	$v_{\scriptscriptstyle MIL411}$	$\pmb{v}_{\scriptscriptstyle PLE214}$
P_{MIL211}	3331,5	-2038,2	0,0	-490,9	0,0		-156,0	-184,2	0,0
P_{MIL411}	-2045,5	4046,5	0,0	0,0	-2000,9		61,9	57,6	0,0
P_{PLE214}	0,0	0,0	3982,6	-1324,5	0,0		0,0	0,0	315,6
P_{KOZ211}	-519,8	0,0	-1363,8	5179,2	-2279,5		56,8	0,0	-2,7
P_{KOZ411}	0,0	-2042,5	0,0	-2274,7	4317,2		0,0	121,2	0,0
Q_{MIL211}	-585,5	184,2	0,0	180,1	0,0	1	3115,8	-2038,2	0,0
Q _{MIL411}	-61,9	-365,6	0,0	0,0	427,5	-2	2045,5	3950,0	0,0
Q_{PLE214}	0,0	0,0	-892,0	325,2	0,0		0,0	0,0	3662,8

Dla przyjętego wektora stanu:

$$\boldsymbol{X}^{(i=1)} = \begin{bmatrix} \delta_{MIL211} \\ \delta_{MIL411} \\ \delta_{PLE214} \\ \delta_{KOZ211} \\ U_{MIL211} \\ U_{MIL211} \\ U_{MIL411} \\ U_{PLE214} \end{bmatrix} = \begin{bmatrix} -8,461 \\ -5,012 \\ -2,111 \\ 4,729 \\ 2,716 \\ 229,20 \\ 403,06 \\ 229,930 \end{bmatrix}$$

obliczamy moce węzłowe; najpierw prądy z równania $\underline{I} = \underline{Y} \cdot \underline{U}$ a potem

moce
$$\underline{S}_i = P_i^{obl,} + jP_i^{obl,} = \underline{U}_i \cdot \underline{I}_i^*$$
 oraz wektor niezbilansowań mocy:

$$\begin{bmatrix} P_{MU,211}^{obl,} - P_{MU,211}^{zad,} \end{bmatrix}$$

$$\Delta \boldsymbol{P}^{(i=1)} = \begin{bmatrix} P_{MIL211}^{obl} - P_{MIL211}^{zad}, \\ P_{MIL411}^{obl} - P_{PLE214}^{zad}, \\ P_{PLE214}^{obl} - P_{PLE214}^{zad}, \\ P_{KOZ211}^{obl} - P_{KOZ211}^{zad}, \\ P_{KOZ411}^{obl} - P_{KOZ411}^{zad}, \\ Q_{MIL211}^{obl} - Q_{MIL211}^{zad}, \\ Q_{MIL211}^{obl} - Q_{MIL211}^{zad}, \\ Q_{MIL211}^{obl} - Q_{MIL411}^{zad}, \\ Q_{MIL211}^{obl} - Q_{MIL411}^{zad}, \\ Q_{MIL411}^{obl} - Q_{PLE214}^{zad}, \\ Q_{PLE214}^{obl} - Q_{PLE214}^{cab} - Q_{PLE214}^{zab}, \\ Q_{PLE214}^{obl} - Q_{PLE214}^{cab} - Q_{PLE214$$

Jak widać niezbilansowania mocy są znacznie mniejsze niż w kroku zerowym,

Tworzymy liniowy układ równań:

3331,5	-2038,2	0,0	-490,9	0,0	-156,0	-184,2	0,0		δ_{MIL211}		-10,76
-2045,5	4046,5	0,0	0,0	-2000,9	61,9	57,6	0,0		δ_{MIL411}		-6,02
0,0	0,0	982,6	-1324,5	0,0	0,0	0,0	315,6		δ_{PLE214}		8,21
-519,8	0,0	-1363,8	5179,2	-2279,5	56,8	0,0	-2,7	•	δ_{KOZ411}	=	-13,53
0,0	-2042,5	0,0	-2274,7	4317,2	0,0	121,2	0,0		δ_{KOZ211}		-2,72
-585,5	184,2	0,0	180,1	0,0	3115,8	-2038,2	0,0		U_{MIL211}		-32,13
-61,9	-365,6	0,0	0,0	427,5	-2045,5	3950,0	0,0		U_{MIL411}		-21,76
0,0	0,0	-892,0	325,2	0,0	0,0	0,0	3662,8		U_{PLE214}		-20,12

którego rozwiązaniem jest:

δ_{MIL211}	-0,001485	stąd nowe wartości napięć węzłowych są:
δ_{MIL411}	-0,003688	$\underline{U}_{MIL211} = (229,20 + 229,20 \cdot (-0,020715)) \cdot e^{j(-8,461 + (-0,001485) \cdot 57,296)} =$
δ_{PLE214}	0,001110	$= 224,45 \cdot e^{-j8,546}$
δ_{KOZ211}	= -0,004023	$\underline{U}_{MIL411} = (403,06 + 403,06 \cdot (-0,016164)) \cdot e^{j(-5,012 + (-0,003688) \cdot 57,296)} =$
δ_{KOZ411}	-0,004040	$= 396,54 \cdot e^{-j5,223}$
U_{MIL211}	-0,020715	$\underline{U}_{PLE214} = (229,93 + 229,93 \cdot (-0,004867)) \cdot e^{j(-2,111+0,001110\cdot 57,296)} =$
U_{MIL411}	-0,016164	$= 228,81 \cdot e^{-j2,048}$
U_{PLE214}	-0,004867	$\underline{U}_{KOZ211} = 245,00 \cdot e^{j(4,729+0,004023\cdot57,296)} = 245,000 \cdot e^{j4,499}$
		$\underline{U}_{K0Z411} = 420,00 \cdot e^{j(2,716+0,004040\cdot 57,296)} = 245,000 \cdot e^{j2,484}$
		$\underline{U}_{PAK214} = 240,00 \cdot e^{j0}$

Warto zauważyć, że wynikowy wektor stanu już w drugim kroku ma niewielkie wartości. W trzecim kroku niezbilansowania mocy będą już poniżej 1MW(Mvar), a największa wartość rozwiązania będzie poniżej 0,0005.

Wyniki obliczeń metodą Newtona-Rahsona w postaci tekstowej otrzymane po czterech iteracjach są:

4.Bilan	ł.Bilanse węzłowe													
Węzeł	Typ Vz	Vi	Di	Pl	Ql	Pg	Qg	dP	dQ					
-	- kV	kV	stopnie	MW	Mvar	MW	Mvar	MW	Mvar					
MIL211	1 220	224.341	-8.551	-360.0	-140.0	0.0	0.0	0.00	0.00					
MIL411	1 400	396.400	-5.231	-160.0	-70.0	0.0	0.0	0.00	0.00					
PLE214	1 220	228.800	-2.048	-280.0	-180.0	0.0	0.0	0.00	0.00					
KOZ211	2 245	245.000	4.495	0.0	0.0	450.0	86.6	0.00	0.00					
KOZ411	2 420	420.000	2.479	0.0	0.0	200.0	57.9	0.00	0.00					
PAK214	4 240	240.000	0.000	0.0	0.0	165.3	128.5	0.00	0.00					

5.Przepływy mocy w gałęziach

Gałąź	Pocz.	Kon.	Ppocz.	Qpocz.	Pkońc.	Qkońc.	dP	dQ	Qład.	Obc.	Ipocz.]	lkońc.
-	-	-	MW	Mvar	MW	Mvar	MW	Mvar	Mvar	00	A	A
L1	PAK214	4 PLE214	118.3	109.8	116.7	111.1	-1.66	-9.5	10.8	52	388	407
L2	PAK214	4 KOZ211	-81.2	-19.1	-82.1	-2.7	-0.81	-6.6	23.1	. 26	201	193
L3	PAK214	1 MIL211	128.2	37.9	125.6	40.4	-2.64	-21.7	24.2	2 44	322	340
L4	KOZ211	L MIL211	122.0	24.1	118.3	34.1	-3.68	-30.2	40.2	33	293	317
L5	KOZ211	L PLE214	166.2	77.0	163.3	68.9	-2.91	-23.9	15.7	53	432	447
L6	KOZ411	L MIL411	279.6	37.8	276.4	144.9	-3.26	-43.0	150.1	. 31	388	455
MIL-T1	MIL411	L MIL211	116.4	74.9	116.1	65.6	-0.28	-9.4	0.0	55	202	343
KOZ-T1	KOZ411	L KOZ211	-79.6	20.1	-79.7	17.2	-0.09	-2.9	0.0	33	113	192

Wyniki obliczeń metodą Newtona w postaci graficznej dla całejsieci przykładowej przedstawia (Rys 2.4).

Rys 2.4. Wyniki obliczeń metodą Newtona-Raphsona

3. Metoda rozłączna Stotta

W metodzie rozłącznej Stotta korzysta się z równań mocy węzłowych, w których napięcia przedstawia się w układzie biegunowym, a admitancje w układzie prostokątnym:

$$P_{i} = U_{i}^{2} G_{ii} + U_{i} \sum_{j \in N_{i}} U_{j} (B_{ij} \sin \delta_{ij} + G_{ij} \cos \delta_{ij})$$

$$Q_{i} = -U_{i}^{2} B_{ii} + U_{i} \sum_{j \in N_{i}} U_{j} (G_{ij} \sin \delta_{ij} - B_{ij} \cos \delta_{ij})$$
(3.1)

Założenia:

 $G_{ij} \ll B_{ij} \Rightarrow G_{ij} = 0, \ \sin \delta_{ij} \approx \delta_{ij}, \ \cos \delta_{ij} \approx 1$

W praktyce kąt δ_{ij} jest niewielki, toteż można założyć, że $\cos \delta_{ij} \approx l$ oraz $\sin \delta_{ij} = \delta_{ij}$. Wówczas równania mocy węzłowych mają postać:

$$P_{i} = U_{i}^{2} G_{ii} + \sum_{j \in N_{i}} U_{j} U_{j} G_{ij} + \sum_{j \in N_{i}} U_{i} U_{j} B_{ij} \delta_{ij}$$

$$\frac{Q_{i}}{U_{i}} = -U_{i} B_{ii} - \sum_{j \in N_{i}} U_{j} B_{ij} + \sum_{j \in N_{i}} U_{j} G_{ij} \delta_{ij}$$
(3.2)

Można przyjąć, że suma dwóch pierwszych składników w równaniu mocy czynnej jest równa zeru:

$$U_i^2 G_{ii} + \sum_{j \in N_i} U_j U_j G_{ij} \approx 0$$
(3.3)

gdyż $G_{ii} = -\sum G_{ij}$ (wynika to z definicji elementów macierzy admitancyjnej węzłowej). Ponadto zakłada się niewielki wpływ ostatniego składnika sumy w równaniu na moc bierną, tzn.

$$\sum_{j \in N_i} U_j G_{ij} \delta_{ij} \approx 0 \tag{3.4}$$

Wtedy równania węzłowe przyjmą postać:

$$P_{i} = \sum_{j \in N_{i}} U_{i} U_{j} B_{ij} \delta_{ij}$$

$$-\frac{Q_{i}}{U_{i}} = U_{i} B_{ii} + \sum_{j \in N_{i}} U_{j} B_{ij}$$
(3.5)

Równania te są liniowe i stanowią podstawę do obliczenia elementów macierzy Jakobiego jak w klasycznej metodzie Newtona-Raphsona. Oblicza się więc pochodne:

$$H_{ij} = \frac{\partial P_i}{\partial \Delta \delta_j} = -U_{io} U_{jo} B_{ij}$$

$$H_{ii} = \frac{\partial P_i}{\partial \Delta \delta_i} = \sum_{j \in N_i} U_{io} U_{jo} B_{ij} \quad i, j = 1, 2, \dots N-1$$

$$L_{ij} = \frac{\partial Q_i}{\partial \Delta u_j} = B_{ij}$$

$$L_{ii} = \frac{\partial Q_i}{\partial \Delta u_i} = B_{ii} \quad i, j = 1, 2, \dots L$$

$$(3.6)$$

Równanie iteracyjne metody rozłącznej Stotta ma teraz następującą postać:

$$\Delta \mathbf{P} = \mathbf{H} \ \Delta \delta$$
$$\Delta \mathbf{O} = \mathbf{L} \ \Delta \mathbf{u} \tag{3.7}$$

gdzie elementami macierzy kolumnowej ΔP są niezbilansowania mocy czynnych, a macierzy ΔQ niezbilansowania mocy biernych podzielone przez moduły napięć węzłowych. Zatem można powiedzieć, że macierz Jacobiego została zredukowana do macierzy:

$$\mathbf{J} = \begin{bmatrix} \begin{bmatrix} \frac{\partial P_i}{\partial \delta_j} \end{bmatrix} & \begin{bmatrix} \frac{\partial P_i}{\partial u_j} = 0 \\ \begin{bmatrix} \frac{\partial Q_i}{\partial \delta_j} = 0 \end{bmatrix} & \begin{bmatrix} \frac{\partial Q_i}{\partial u_j} \end{bmatrix} = \begin{bmatrix} \mathbf{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{L} \end{bmatrix}$$

Są to dwa niezależne liniowe układy równań algebraicznych, stąd nazwa metody - rozłączna. Należy zauważyć, że wymiary macierzy H oraz L są różne. Wymiar macierzy H wynosi N-1, tyle bowiem jest niewiadomych kątów fazowych napięć węzłowych, które są obliczane na podstawie równań mocy czynnych. Macierz L ma wymiar równy liczbie węzłów odbiorowych w sieci, bowiem na podstawie równań mocy biernych dla węzłów odbiorowych są obliczane niewiadome wartości modułów napięć węzłowych.

Algorytm metody rozłącznej:

- 1. Dane: topologia i parametry sieci, macierz Y, obciążenia węzłowe.
- 2. Numeruje się węzły sieci w kolejności: węzły odbiorowe, elektrowniane oraz węzeł bilansujący ma numer ostatni.
- 3. Przyjmuje się wstępne (przybliżone) wartości napięć węzłowych krok zerowy.
- 4. Oblicza się współczynniki macierzy **H**, **L** na podstawie macierzy admitancyjnej węzłowej sieci i wstępnie przyjętych napięć węzłowych. Oblicza się "inwersję" tych macierzy w celu łatwego rozwiązywania liniowego układu równań.
- 5. Oblicza się niezbilansowania mocy czynnych i biernych w węzłach sieci oblicza się moce węzłowe na podstawie równań mocowo-napięciowych sieci i odejmuje je od wartości zadanych. Jeśli niezbilansowania te dla wszystkich węzłów są dostatecznie małe (mniejsze od zadanej dokładności) to kończy się proces iteracyjny i przechodzi do p.7.
- 6. Rozwiązuje się dwa liniowe układy równań otrzymując poprawki kątów i modułów napięć węzłowych. Koryguje się napięcia węzłowe i wraca się do punktu 2.
- 7. Oblicza się przepływy prądów i mocy oraz straty w elementach sieci przesyłowej i kończy się obliczenia rozpływu mocy przechodzi się do analizy wyników.

Rys 3.1.Schemat blokowy algorytmu metody rozłącznej

3.1. Przykład obliczeń wg algorytmu metody rozłącznej

- Należy ponumerować odpowiednio węzły w sieci: kolejne numery otrzymują węzły odbiorowe, dalej węzły elektrowniane, a numer ostatni ma węzeł bilansujący jak na (*Rys.2.2*).
- > Przyjmujemy początkowy wektor stanu X napięcia węzłowe:

$$\mathbf{X}^{(i=0)} = \begin{bmatrix} \delta_{MIL211} \\ \delta_{MIL411} \\ \delta_{PLE214} \\ \delta_{KOZ211} \\ U_{MIL211} \\ U_{MIL211} \\ U_{MIL411} \\ U_{PLE214} \end{bmatrix} = \begin{bmatrix} 0,00 \\ 0,00 \\ 0,00 \\ 0,00 \\ 220,00 \\ 400,00 \\ 220,00 \end{bmatrix}$$

Tworzymy macierze Jakobiego typu H, L – pochodnych mocy czynnych względem kątów i mocy biernych względem modułów napięć – wzory (3.6). Dla przykładu – kilka elementów tej macierzy związanych z węzłem *MIL211*.

Węzeł *MIL211* jest połączony z węzłem *PAK214* linią *L3* oraz z węzłem *KOZ211* linią *L4*, a także z węzłem *MIL411* transformatorem *MIL-T1* jak na (*Rys.2.2*).

Rys 3.2. Połączenia węzła MIL211

Wiersz macierzy admitancyjnej odpowiadający węzłowi MIL211 jest:

	MIL211	MIL411	PLE214	KOZ211	KOZ411	PAK214
MIL211	0.004088	-0.000663	0.00000	-0.001127	0.00000	-0.001832
	-0.061365	0.022143	0.000000	0.009243	0.000000	0.015021

Pochodne mocy czynnej względem kątów fazowych napięć – elementy macierzy H:

$$H_{ij} = \frac{\partial P_i}{\partial \Delta \delta_j} = -U_{io} U_{jo} B_{ij}$$
$$H_{ii} = \frac{\partial P_i}{\partial \Delta \delta_i} = \sum_{j \in N_i} U_{io} U_{jo} B_{ij}$$

 $H_{ii} = \frac{\partial P_{MIL211}}{\partial \delta_{MIL211}} = U_{MIL211} \cdot U_{MIL411} \cdot B_{MIL211,MIL411} + U_{MIL211} \cdot U_{KOZ211} \cdot B_{MIL211,KOZ211} + U_{MIL211} \cdot U_{PAK214} \cdot B_{MIL211,PAK214} = 220,00 \cdot 400,00 \cdot 0,022143 + 220,00 \cdot 245,00 \cdot 0,009243 + 220,00 \cdot 240,00 \cdot 0,015021 = 1948,6 + 498,2 + 793,1 = 3239,9$

$$H_{ij} = \frac{\partial P_{MIL211}}{\partial \delta_{MIL411}} = -U_{MIL211} \cdot U_{MIL411} \cdot B_{MIL211,MIL411} = -220,00 \cdot 400,00 \cdot 0,022143 = -1948,6$$

$$H_{ji} = \frac{\partial P_{MIL411}}{\partial \delta_{MIL211}} = -U_{MIL411} \cdot U_{MIL211} \cdot B_{MIL411,MIL211} = 400,00 \cdot 220,00 \cdot 0,022143 = -1948,6$$

$$= 400,00 \cdot 220,00 \cdot [-0.000663 \cdot \sin(0.00 - 0.00) - 0.022143 \cdot \cos(0.00 - 0.00)] = -1948,6$$

Wykład 7

Pochodne mocy biernej względem modułów napięć – elementy macierzy L:

$$L_{ij} = \frac{\partial Q_i}{\partial \Delta u_j} = B_{ij}$$
$$L_{ii} = \frac{\partial Q_i}{\partial \Delta u_i} = B_{ii}$$
$$L_{ii} = \frac{\partial Q_{MIL211}}{\partial U_{MIL211}} = G_{MIL211,MIL21} = -0,06135$$
$$L_{ij} = \frac{\partial Q_{MIL211}}{\partial U_{MIL211}} = B_{MIL211,MIL411} = 0,022143$$
$$L_{ji} = \frac{\partial Q_{MIL411}}{\partial U_{MIL211}} = B_{MIL411,MIL211} = 0,022143$$

Pełna macierze H oraz L sieci przykładowej dla kolejnych kroków są stałe i mają następujące wartości liczbowe:

Macierz H:

	δ_{MIL211}	δ_{MIL411}	δ_{PLE214}	δ_{KOZ211}	δ_{KOZ411}
P_{MIL211}	3239,9	-1948,6	0,0	-498,2	0,0
P_{MIL411}	-1948,6	3973,3	0,0	0,0	-2024,7
P_{PLE214}	0,0	0,0	3856,9	-1295,4	0,0
P_{KOZ211}	-498,2	0,0	-1295,4	5081,5	-2278,5
P_{KOZ411}	0,0	-2024,7	0,0	-2278,5	4303,2

Macierz L:

	$\pmb{v}_{\scriptscriptstyle MIL211}$	$v_{\scriptscriptstyle MIL411}$	$\pmb{v}_{\scriptscriptstyle PLE214}$	$\pmb{v}_{\scriptscriptstyle KOZ211}$	$\pmb{v}_{\scriptscriptstyle KOZ411}$
Q_{MIL211}	-0,061365	0,022143	0,000000	0,009243	0,000000
Q MIL411	0,022143	-0,024611	0,000000	0,00000	0,012052
Q PLE214	0,000000	0,000000	-0,072309	0,024033	0,000000
Q KOZ211	0,009243	0,000000	0,024033	8,74E+04	0,022143
Q _{KOZ411}	0,000000	0,012052	0,000000	0,022143	2,46E+04

Tworzymy dwa liniowe układy równań:

Krok 1 - rozwiązania:

Jak widać proces iteracyjny jest dość dobrze zbieżny, gdyż już po czterech iteracjach niezbilansowania mocy są niewielkie i stąd niewielkie zmiany modułów i kątów napięć węzłowych.

Wyniki obliczeń metodą rozłączną Stotta w postaci tekstowej otrzymane po dziesięciu iteracjach są: 4.Bilanse wezłowe

1.011011	50 NŞ110								
Węzeł	Typ Vz	Vi	Di	Pl	Ql	Pg	Qg	dP	dQ
-	- kV	kV	stopnie	MW	Mvar	MW	Mvar	MW	Mvar
MIL211	1 220	224.341	-8.551	-360.0	-140.0	0.0	0.0	0.00	0.00
MIL411	1 400	396.400	-5.231	-160.0	-70.0	0.0	0.0	0.00	0.00
PLE214	1 220	228.800	-2.048	-280.0	-180.0	0.0	0.0	0.00	0.00
KOZ211	2 245	245.000	4.495	0.0	0.0	450.0	86.6	0.00	0.00
KOZ411	2 420	420.000	2.479	0.0	0.0	200.0	57.9	0.00	0.00
PAK214	4 240	240.000	0.000	0.0	0.0	165.3	128.5	0.00	0.00

5.Przepływy mocy w gałęziach

Gałąź	Pocz.	Kon.	Ppocz.	Qpocz.	Pkońc.	Qkońc.	dP	dQ	Qład.	Obc.	Ipocz.I	końc.
-	-	-	MW	Mvar	MW	Mvar	MW	Mvar	Mvar	00	A	A
L1	PAK214	PLE214	118.3	109.8	116.7	111.1	-1.66	-9.5	10.8	52	388	407
L2	PAK214	KOZ211	-81.2	-19.1	-82.1	-2.7	-0.81	-6.6	23.1	26	201	193
L3	PAK214	MIL211	128.2	37.9	125.6	40.4	-2.64	-21.7	24.2	44	322	340
L4	KOZ211	MIL211	122.0	24.1	118.3	34.1	-3.68	-30.2	40.2	33	293	317
L5	KOZ211	PLE214	166.2	77.0	163.3	68.9	-2.91	-23.9	15.7	53	432	447
L6	KOZ411	MIL411	279.6	37.8	276.4	144.9	-3.26	-43.0	150.1	31	388	455
MIL-T1	MIL411	MIL211	116.4	74.9	116.1	65.6	-0.28	-9.4	0.0	55	202	343
KOZ-T1	KOZ411	KOZ211	-79.6	20.1	-79.7	17.2	-0.09	-2.9	0.0	33	113	192

Wyniki obliczeń metodą rozłączną w postaci graficznej dla sieci przykładowej przedstawia (Rys 3.3).

Rys 3.3. Wyniki obliczeń metodą rozłączną Stotta

4. Metoda stałoprądowa

W metodzie stałoprądowej pomija się wpływ rozpływu mocy biernej na poziomy napięć węzłowych (moduły), a oblicza się tylko kąty napięć węzłowych, które dla realnych parametrów impedancyjnych linii i transformatorów (duże wartości reaktancji w porównaniu z wartościami rezystancji) są funkcją obciążeń mocą czynną. W równaniach mocowo-napięciowych pomija się rezystancje elementów sieci przesyłowej i brane są pod wagę tylko równania na moc czynną, które przy tych założeniach mają postać jak (4.1):

$$P_{i} = \sum_{i=1}^{N} U_{i} \cdot U_{j} \cdot B_{ij} \cdot (\delta_{i} - \delta_{j})$$

$$(4.1)$$

Ponieważ nie są brane pod uwagę obciążenia nocą bierną to podczas obliczania elementów B_{ij} należy dla transformatorów przyjąć przekładnię sieciową np. 400/220, zamiast przekładni zwojowej.

Równanie iteracyjne metody stałoprądowej jest podobne jak w metodzie rozłącznej Stotta:

$$\Delta \mathbf{P} = \boldsymbol{H} \ \Delta \delta \tag{4.2}$$

gdzie elementami macierzy kolumnowej $\Delta \mathbf{P}$ są niezbilansowania mocy czynnych. Elementy macierzy **H** oblicza (4.3).

$$H_{ij} = \frac{\partial P_i}{\partial \Delta \delta_j} = -U_{io} \cdot U_{jo} \cdot B_{ij}$$

$$H_{ii} = \frac{\partial P_i}{\partial \Delta \delta_i} = \sum_{j \in N_i} U_{io} \cdot U_{jo} \cdot B_{ij} \quad i, j = 1, 2, \dots N$$

$$(4.3)$$

Należy zwrócić uwagę, że bardzo często zdarza się w praktyce rozbieżność procesu iteracyjnego, która zwykle spowodowana jest 'załamaniem' się modułów napięć węzłowych ze względu na przepływy mocy biernej. Metoda stałoprądowa jest bardziej stabilna pod tym względem i zawsze jest zbieżna, chyba że przez pomyłkę zadane zostaną nierealne wartości mocy czynnych rzędu kilku tysięcy MW.

Algorytm metody stałoprądowej:

- 1. Oblicza się współczynniki macierzy **H** na podstawie reaktancji gałęzi i wstępnie przyjętych napięć węzłowych. Oblicza się "inwersję" macierzy **H** w celu łatwego rozwiązywania liniowego układu równań.
- 2. Oblicza się niezbilansowania mocy czynnych w węzłach sieci oblicza się moce węzłowe na podstawie równań mocowo-napięciowych sieci i odejmuje je od wartości zadanych.
- 3. Rozwiązuje się liniowy układ równań otrzymując poprawki kątów węzłowych. Koryguje się napięcia węzłowe.
- 4. Oblicza się przepływy prądów i mocy oraz straty w elementach sieci przesyłowej i kończy się obliczenia rozpływu mocy. Korzysta się ze wzoru (4.4), zarówno dla linii

jak i transformatora, jeśli impedancja transformatora jest odniesiona do napięcia $U_{n(k)}$.

$$P_{kl} = \frac{\delta_k - \delta_l}{\frac{X_{kl}}{U_{n(k)}^2}} \tag{4.4}$$

Przy określaniu przeciążeń prądowych w gałęziach sieci można założyć średni tg φ (cos $\varphi_{\text{śr.}}$), i obliczać dopuszczalne przepływy mocy w gałęziach według następującego wzoru:

$$S_{kl}^{(\text{max})} = \sqrt{3} U_{n(kl)} I_{n(kl)}^{(\text{max})} \cos\varphi_{\text{śr.}}$$
(4.5)

tak więc przy wykrywaniu przeciążeń ($S_{kl} > S_{kl}^{(max)}$) można uwzględnić w sposób przybliżony rozpływ mocy biernej.

Rys 4.1. Schemat blokowy metody stałoprądowej

4.1. Przykład obliczeń wg algorytmu metody stałoprądowej

Tworzymy macierz **H**, – pochodnych mocy czynnych względem kątów – wzory (4.3). Dla przykładu – kilka elementów tej macierzy związanych z węzłem *MIL211*.Węzeł MIL211 jest połączony z węzłem *PAK214* linią *L3* oraz z węzłem *KOZ211* linią *L4*, a także z węzłem *MIL411* transformatorem *MIL-T1* jak na (Rys.2.2).

Rys 4.2. Połączenia węzła MIL211

Reaktancje gałęzi przyłączonych do węzła MIL211:

L3: 65,60 L4: 106,60 MIL-T1: 76,80 ϑ = 400/220=1,81818

Pochodne mocy czynnej względem kątów fazowych napięć – elementy macierzy H:

$$H_{ij} = \frac{\partial P_i}{\partial \Delta \delta_j} = -U_{io} U_{jo} B_{ij}$$

$$H_{ii} = \frac{\partial P_i}{\partial \Delta \delta_i} = \sum_{j \in N_i} U_{io} U_{jo} B_{ij}$$

$$H_{ij} = \frac{\partial P_{MIL211}}{\partial \delta_{MIL411}} = \frac{-U_{MIL211} \cdot U_{MIL411}}{X_{MIL-T1}} \cdot \vartheta = \frac{-220,00 \cdot 400,00}{76,80} \cdot 1,81818 = -2083,33$$

$$H_{ij} = \frac{\partial P_{MIL211}}{\partial \delta_{KOZ211}} = \frac{-U_{MIL211} \cdot U_{KOZ211}}{X_{L4}} = \frac{-220,00 \cdot 400,00}{106,60} = -454,03$$

$$H_{ii} = \frac{\partial P_{MIL211}}{\partial \delta_{MIL211}} = \frac{U_{MIL211} \cdot U_{MIL411}}{X_{MIL-T1}} \cdot \vartheta_{MIL-T1} + \frac{U_{MIL211} \cdot U_{KOZ211}}{X_{L4}} \cdot + \frac{U_{MIL211} \cdot U_{PAK214}}{X_{L3}} \cdot = \frac{220,00 \cdot 400,00}{76,80} \cdot 1,81818 + \frac{220,00 \cdot 220,00}{106,60} + \frac{220,00 \cdot 220,00}{65,60} = -2083,33 + 454,03 + 737,80 = 3275,17$$

Pełna macierz H jest:

	δ_{MIL211}	δ_{MIL411}	δ_{PLE214}	δ_{KOZ211}	$\boldsymbol{\delta}_{KO}$	Z411			
P_{MIL211}	3277,2	-2083,3	0,0	-454,0	C),0			
P_{MIL411}	-2083,3	4022,7	0,0	0,0	-1939	,4			
P_{PLE214}	0,0	0,0	3600,5	-1180,5	C),0			
P_{KOZ211}	-454,0	0,0	-1180,5	4561,1	-2083	,3			
P_{KOZ411}	0,0	-1939,4	0,0	-2083,3	4022	2,7			
_		н			_	Δδ	-	ΔΡ	_
3277,2	-2083,3	0,0) -454	,0	0,0	δ_{MIL211}		360,00	
-2083,3	4022,7	0,0) 0	,0 -193	9,4	δ_{MIL411}		-160,00	
0,0	0,0	3600,5	5 -1180	, 5	0,0 •	δ_{PLE214}	=	-280,00	
-454,0	0,0	-1180,5	5 4561	,1 -208	3,3	δ_{KOZ411}		450,00	
0,0	-1939,4	0,0	-2083	,3 402	2,7	δ_{K07211}	1	200,00	

którego rozwiązanie jest:

δ	Nowe n		
-0,15821 -0,09654 -0,04673 0,09466 0,05220	 $\begin{split} & \underline{U}_{MIL211} = 220,00 \cdot e^{-j(0,15821\cdot57,296)} \\ & \underline{U}_{MIL411} = 400,00 \cdot e^{-j(0,09654\cdot57,296)} \\ & \underline{U}_{PLE214} = 220,00 \cdot e^{-j(0,04673\cdot57,296)} \\ & \underline{U}_{KOZ211} = 220,00 \cdot e^{j(0,09466\cdot57,296)} \\ & \underline{U}_{KOZ411} = 400,00 \cdot e^{j(0,05220\cdot57,296)} \end{split}$		$\begin{array}{c} 220,00 \cdot e^{-j9,065} \\ 400,00 \cdot e^{-j5,532)} \\ 220,00 \cdot e^{-j2,678} \\ 220,00 \cdot e^{j5,424} \\ 400,00 \cdot e^{j2,991} \end{array}$

Wyniki obliczeń metodą stałoprądową w postaci tekstowej są:

4.Bilan	se węzło	we							
Węzeł	Typ Vz	Vi	Di	Pl	Ql	Pg	Qg	dP	dQ
-	– kV	kV	stopnie	MW	Mvar	MW	Mvar	MW	Mvar
MIL211	1 220	220.000	-9.065	-360.0	0.0	0.0	0.0	360.00	0.00
MIL411	1 400	400.000	-5.532	-160.0	0.0	0.0	0.0	288.46	0.00
PLE214	1 220	220.000	-2.678	-280.0	0.0	0.0	0.0	280.00	0.00
KOZ211	3 245	220.000	5.424	0.0	0.0	450.0	0.0	-168.28	0.00
KOZ411	3 420	400.000	2.991	0.0	0.0	200.0	0.0	0.00	0.00
PAK214	4 240	220.000	0.000	0.0	0.0	150.0	0.0	0.00	0.00

5.Przepływy mocy w gałęziach												
Gałąź	Pocz.	Kon.	Ppocz.	Qpocz.	Pkońc.	Qkońc.	dP	dQ	Qład.	Obc.	Ipocz.I	końc.
-	-	-	MW	Mvar	MW	Mvar	MW	Mvar	Mvar	00	A	A
L1	PAK214	PLE214	113.1	0.0	113.1	0.0	0.00	0.0	0.0	38	297	297
L2	PAK214	KOZ211	-79.8	0.0	-79.8	0.0	0.00	0.0	0.0	27	209	209
L3	PAK214	MIL211	116.7	0.0	116.7	0.0	0.00	0.0	0.0	39	306	306
L4	KOZ211	MIL211	114.8	0.0	114.8	0.0	0.00	0.0	0.0	32	301	301
ь5	KOZ211	PLE214	166.9	0.0	166.9	0.0	0.00	0.0	0.0	52	438	438
LG	KOZ411	MIL411	288.5	0.0	288.5	0.0	0.00	0.0	0.0	28	416	416
MIL-T1	MIL411	MIL211	128.5	0.0	128.5	0.0	0.00	0.0	0.0	51	185	337
KOZ-T1	KOZ411	KOZ211	-88.5	0.0	-88.5	0.0	0.00	0.0	0.0	35	128	232

Wyniki obliczeń metodą stałoprądowąw postaci graficznej dla sieci przykładowej przedstawia (Rys 4.3).

Rys 4.3. Wyniki obliczeń metodą stałoprądową

5. Metoda Warda-Hale'a

Wyznaczanie napięć węzłowych metodą Warda-Hale'a polega na wielokrotnym rozwiązywaniu układu równań, który w zapisie macierzowym ma postać:

$$\underline{I} = \underline{Y} \cdot \underline{U}$$

$$\underline{S}_{i} = \underline{U} \cdot \underline{I}_{i}^{*} \quad dla \quad i = 1, 2, \cdots, N$$
(5.1)

Napięcia, prądy, moce i admitancje przedstawia się w postaci algebraicznej, stosując następujące oznaczenia:

$$\frac{I_i}{U_i} = a_i + jb_i
\underline{U}_i = E_i + jF_i
\underline{Y}_{ij} = G_{ij} + jB_{ij}
\underline{S}_i = P_i + jQ_i$$
(5.2)

Rozwiązywanie równań rozpływu mocy metodą Warda-Hale' a polega na kolejnych przybliżeniach wektora napięć węzłowych. W kroku zerowym zakłada się pierwsze przybliżenie napięć węzłowych we wszystkich węzłach odbiorowych i elektrownianych. Pozwala to na obliczenie prądów węzłowych, a więc i mocy węzłowych. Przy przypadkowo przyjętych napięciach, obliczone moce nie będą równe mocom zadanym. Na podstawie różnicy tych mocy oblicza się poprawkę ΔU danego węzła, która dodana do napięcia tego węzła wyzeruje niezbilansowanie. Proces ten powtarza się dla wszystkich węzłów, przy czym nieco inną taktykę stosuje się do węzłów odbiorowych, a inną do elektrownianych, natomiast węzeł bilansujący się pomija. Powtarzając cykl wielokrotnie okazuje się, że poprawki ΔU maleją. Zakładając zatem pewną dokładność ε , należy proces iteracyjny przerwać, gdy maksymalna poprawka ΔU w kolejnej iteracji będzie mniejsza od ε .

Zakładając napięcia węzłowe $\underline{U}^{(o)}$ w kroku zerowym, prąd w dowolnym węźle oblicza się ze wzoru:

$$\underline{I}_{i} = \underline{Y}_{ii} \cdot \underline{U}_{i}^{(o)} + \sum_{j \in N_{i}} \underline{Y}_{ij} \cdot \underline{U}_{j}^{(o)} = a_{i} + jb_{i}$$

$$\underline{S}_{i}^{obl} = \underline{U}_{i}^{(o)} \cdot \underline{I}_{i}^{*} \neq \underline{S}_{i}^{zad}.$$
(5.3)

Niech rozważany węzeł będzie typu odbiorowego, a więc o zadanej mocy czynnej $P_i^{(zad.)}$ oraz biernej $Q_i^{(zad.)}$. Przy przypadkowo przyjętym wektorze napięć <u>U</u> moce obliczone na podstawie wzoru (5.3) nie będą równe mocom zadanym, a więc otrzyma się błąd bilansu mocy czynnej i biernej w węźle:

$$\Delta P_i = P_i^{zad.} - P_i^{obl.}$$

$$\Delta Q_i = Q_i^{zad.} - Q_i^{obl.}$$
(5.4)

Aby powyższe moce dodatkowo wprowadzić do węzła odbiorowego, trzeba napięcie \underline{U}_i uzupełnić nieznaną poprawką $\Delta \underline{U}_i = x + jy$. Należy ułożyć równanie, z których będzie można obliczyć składowe x oraz y. Przy nowym napięciu $\underline{U}_i + \Delta \underline{U}_i$ moc obliczeniowa będzie równa mocy zadanej:

$$P_{i}^{zad.} + jQ_{i}^{zad.} = (\underline{U}_{i}^{(o)} + \Delta \underline{U}_{i}) \cdot \left\{ \underline{Y}_{ii} \cdot (\underline{U}_{i}^{(o)} + \Delta \underline{U}_{i}) + \sum_{j \in N_{i}} \underline{Y}_{ij} \cdot \underline{U}_{j}^{(o)} \right\}^{*} = \left(\underline{U}_{i}^{(o)} + \Delta \underline{U}_{i}\right) \cdot \left\{ \underline{Y}_{ii} \cdot (\underline{U}_{i}^{(o)} + \sum_{j \in N_{i}} \underline{Y}_{ij} \cdot \underline{U}_{j}^{(o)} + \underline{Y}_{ii} \Delta \underline{U}_{i} \right\}^{*} = \left(\underline{U}_{i}^{(o)} + \Delta \underline{U}_{i}\right) \cdot \left\{ I_{i} + \underline{Y}_{ii} \Delta \underline{U}_{i} \right\}^{*}$$

$$(5.5)$$

czyli:

$$P_i^{zad.} + jQ_i^{zad.} = (\underline{U}_i^{(0)} + \Delta \underline{U}_i)(I_i^* + \underline{Y}_{ii}^* \cdot \Delta \underline{U}_i^*) =$$

$$= (E_i^{(0)} + jF_i^0 + \Delta E_i + j\Delta F_i) \cdot [(a_i + jb_i) + (G_{ii} - jB_{ii}) \cdot (\Delta E_i - j\Delta F_i)]$$
(5.6)

Otrzymaliśmy jedno równanie na liczbach zespolonych, którego rozwiązanie sprowadza się do dwóch równań na liczbach rzeczywistych – jedno wynikające z wydzielenia części rzeczywistych do oddzielnego równania, a drugie z wydzielenia części urojonych (z pominięciem operatora j). Należy zauważyć, że w równaniach wystąpią człony kwadratowe typu $\Delta E_i \Delta E_i$ oraz $\Delta E_i \Delta F_i$. W metodzie Warda-Hale'a te człony zostały pominięte i przyjmując oznaczenia:

$$\underline{Y}_{ii} = G_{ii} + jB_{ii}$$

$$\underline{I}_{i} = \underline{Y}_{ii} \cdot \underline{U}_{i}^{(o)} + \sum_{j \in N_{i}} \underline{Y}_{ij} \cdot \underline{U}_{j}^{(o)} = a_{i} + b_{i}$$

$$\underline{U}_{i}^{(o)} = E_{i} + jF_{i}$$

$$\underline{\Delta U}_{i} = \Delta E_{i} + j\Delta F_{i}$$

$$\Delta P_{i} = P_{i}^{zad.} - P_{i}^{obl.} \qquad \Delta Q_{i} = Q_{i}^{zad.} - Q_{i}^{obl.}$$
(5.7)

otrzymuje się następujące wzory na obliczenie poprawki napięciowej:

$$\Delta E_{i} = \frac{F \cdot \Delta P_{i} - B \cdot \Delta Q_{i}}{A \cdot F - B \cdot H}$$

$$\Delta F_{i} = \frac{A \cdot \Delta Q_{i} - H \cdot \Delta P_{i}}{A \cdot F - B \cdot H}$$
(5.8)

gdzie:

$$A = a_i + E_i \cdot G_{ii} + F_i \cdot B_{ii}$$

$$B = b_i - E_i \cdot B_{ii} + F_i \cdot G_{ii}$$

$$H = -b_i - E_i \cdot B_{ii} + F_i \cdot G_{ii}$$

$$F = a_i - E_i \cdot G_{ii} - F_i \cdot B_{ii}$$

(5.9)

Wzory (5.8) dotyczą węzła odbiorowego (typu PQ), zaś dla węzła elektrownianego nie można obliczyć ΔQ_i , 10.ale dla tego węzła dąży się do spełnienia warunków:

$$\Delta P_i = P_i^{zad.} - P_i^{obl.} \longrightarrow 0$$

$$\left| \Delta U_i \right|^2 = \left| U_i^{zad.} \right|^2 - \left| U_i \right|^2 \longrightarrow 0$$
(5.10)

i stąd wynikają wzory na poprawki dla węzła elektrownianego:

$$\Delta E_{i} = \frac{D \cdot \Delta P_{i} - B \cdot |\Delta U_{i}|^{2}}{A \cdot D - B \cdot C}$$

$$\Delta F_{i} = \frac{A \cdot |\Delta U_{i}|^{2} - C \cdot \Delta P_{i}}{A \cdot D - B \cdot C}$$
(5.11)

gdzie A,B jak wyżej, natomiast:

$$C = 2 \cdot E_i$$

$$D = 2 \cdot F_i$$
(5.12)

Procedura iteracji napięć polega na obliczaniu poprawek napięciowych w kolejnych pojedynczych węzłach, ale przechodząc do następnego węzła, może się okazać, że w poprzednich węzłach pojawi się niezbilansowanie mocy. Trzeba więc kolejno skorygować napięcia dla wszystkich węzłów i powtarzać obliczenia. Wykonując kolejne cykle obliczeniowe okazuje się, że niezbilansowania mocy będą malały – proces iteracyjny będzie zbieżny. Przyjmuje się jakiś wskaźnik charakteryzujący dokładność obliczeń, na przykład w postaci sumy wartości bezwzględnych niezbilansowań mocy węzłowych:

 $\sigma = \max (|\Delta P_i| + |\Delta Q_i|) \qquad dla \qquad i = 1, 2, \dots N$ (5.13)

i sprawdza się czy jest on mniejszy od z góry zadanej dokładności obliczeń ϵ .

5.1. Przykład obliczeń metodą Warda-Hale'a

Weźmy pod uwagę fragment sieci przykładowej z (*Rys.2.2*), z wyszczególnionym węzłem *PLE214* który jest przedstawiony na (*Rys 5.1*).

Rys 5.1. Zmiana obciążenia węzła PLE214

Jest to stan sieci odpowiadający zadanemu obciążeniu w węźle *PLE214* - moc jest (-280-j180)MVA. Załóżmy teraz, że obciążenie węzła *PLE214* uległo zmianie do (-100-j80)MVA. Teraz wektor stanu nie będzie już odpowiadał nowemu obciążeniu. Należy więc skorygować napięcia węzłowe, a w szczególności napięcie w węźle *PLE214*. Korekcję tą można wykonać metodą Warda-Halle.

Wiersz macierzy admitancyjnej węzłowej odpowiadającej węzłowi PLE214 jest:

	PAK214	MIL211	MIL411	KOZ411	KOZ211	PLE214
PLE214	-0.008490	0.000000	0.000000	0.000000	-0.002931	0.011421
	0.048514	0.000000	0.000000	0.000000	0.024033	-0.072309

1.Obliczenie prądu węzłowego dla stanu początkowego - mocy węzła *PLE214* =(-280-j180MVA):

$$\begin{split} \underline{U}_{PLE214} &= 228,80 \cdot e^{-j2,0484} = 228,80 \cdot (\cos(-2,0484) + j\sin(-2,0484)) = (228,65 - j8,1782)kV \\ \underline{U}_{KOZ211} &= 245,000 \cdot e^{j4,4953} = 245,00 \cdot (\cos(4,4953) + j\sin(4,4953)) = (244,25 + j19,2024)kV \\ \underline{U}_{PAK214} &= 240e^{j0} = (240,00 + j0,000)kV \\ \underline{I}_{PLE214} &= \underbrace{Y_{PLE214,PLE214} \cdot \underline{U}_{PLE214} + \underbrace{Y_{PLE214,KOZ211} \cdot \underline{U}_{KOZ211} + \underbrace{Y_{PLE214,PAK214} \cdot \underline{U}_{PAK214}}_{+(0,011421 - j0,072309) \cdot (228,65 - j8,11782) + \\ + (-0,002931 + j0,024033) \cdot (244,25 + j19,2024) + \\ + (-0,008490 + j0,048514) \cdot (240,000 + j0,000) = \\ &= (2,0201 - j16,6271) + (-1,1774 + j5,8137) + (-2,0376 + j11,6434) = (-1,1949 + j0,8299)kA \\ 2.Oznaczenia: \\ \underbrace{U}_{PLE214} &= (228,65 - j8,1782)kV = E_i + jF_i \\ \underbrace{I}_{PLE214} &= (-1,1949 + j0,8299)kA \\ \underbrace{Y_{PLE214,PLE214} &= (0,011421 - j0,072309)S = G_{ii} + jB_{ii} \\ \Delta\underline{P}_{PLE214} + j\Delta\underline{Q}_{PLE214} &= (P_{PLE214}^{zdd} + jQ_{PLE214}^{zdd}) = (-100 - j80) - (-280 - j180) = 180 + j100 \\ \Delta U_{PLE214} &= \mathbf{x} + j\mathbf{y} = \Delta E_i + j\Delta F_i \end{split}$$

3.Obliczenia pomocnicze:

$$\begin{split} A &= a_i + E_i \cdot G_{ii} + F_i \cdot B_{ii} = -1,1949 + 228,65 \cdot 0,011421 + (-8,1782) \cdot (-0,072309) = 2,0079 \\ B &= b_i - E_i \cdot B_{ii} + F_i \cdot G_{ii} = 0,8299 + 228,65 \cdot (-0,072309) + (-8,1782) \cdot (0,011421) = 17,2702 \\ H &= -b_i - E_i \cdot B_{ii} + F_i \cdot G_{ii} = -0,82999 - 228,65 \cdot (-0,072309) + (-8,1782) \cdot 0,011421 = 15,6104 \\ F &= a_i - E_i \cdot G_{ii} - F_i \cdot B_{ii} = -1,1949 - 228,65 \cdot 0,011421 - (-8,1782) \cdot (-0,072309) = -4,3977 \\ \Delta P_i + j\Delta Q_i = 180 + j100 \\ A \cdot F - B \cdot H = 2,0072 \cdot (-4,3970) - 17,2703 \cdot 15,6105 = -278,426 \end{split}$$

4.Poprawka napięciowe $\Delta U_{PLE214} = \Delta E_i + j \Delta F_i$:

$$\Delta E_{i} = \frac{F \cdot \Delta P_{i} - B \cdot \Delta Q_{i}}{A \cdot F - B \cdot H} = \frac{-4,3977 \cdot 180 - 17,2702 \cdot 100}{-278,426} = \frac{-2518,4900}{-278,423} = 9,0459$$

$$\Delta F_{i} = \frac{A \cdot \Delta Q_{i} - H \cdot \Delta P_{i}}{A \cdot F - B \cdot H} = \frac{2,0079 \cdot 100 - 15,6104 \cdot 180}{-278,426} = \frac{-2609,152}{-278,423} = 9,3708$$

5. Nowa wartość napięcia U_{PLE214} :

 $\underline{U}_{PLE214}^{nowe} = \underline{U}_{PLE214} + \underline{\Delta}\underline{U}_{PLE214} =$

 $228,65 - j8,178 + 9,0459 + j9,3708 = 237,6959 + j1,1928 = \sqrt{237,6959^2 + 1,1928^2} \cdot e^{jarctg\left(\frac{1,1928}{237,70}\right)} = \textbf{237}, \textbf{70}kV \cdot e^{j\textbf{0.288}}$

Wyniki obliczeń metodą Warda-Halle'a otrzymane po dwudziestu trzech teracjach w postaci tekstowej są:

4.Bilan	se węzło	we											
Węzeł	Typ Vz	Vi	Di	Pl	Ql	I	Pg	Qg		dP	dQ		
-	- kV	kV	stopnie	MW	Mva	r N	MM	Mvar		MW	Mvar		
MIL211	1 220	224.334	-7.749	9 -36	0.0 -14	40.0	0.0)	0.0	-0.03	0	.00	
MIL411	1 400	396.235	-4.239	9 -16	0.0 -'	70.0	0.0)	0.0	-0.02	0	.00	
PLE214	1 220	236.928	0.734	1 -10	0.0 -8	30.0	0.0)	0.0	-0.01	0	.00	
KOZ211	2 245	245.018	5.844	1	0.0	0.0 4	450.0) 3	39.3	-0.02	0	.00	
KOZ411	2 420	420.014	3.661	L	0.0	0.0 2	200.0) 5	59.6	0.00	0	.00	
PAK214	4 240	240.000	0.000)	0.0	0.0 -	-16.9	6	50.0	0.00	0	.00	
5.Przep	ływy moc	y w gałę:	ziach										
Gałąź	Pocz.	Kon.	Ppocz. ()pocz.	Pkońc	. Qkońc	с.	dP	dQ	Qład.	Obc.	Ipocz.	Ikońc.
-	-	-	MW	Mvar	MW	Mvai	r	MW	Mvar	Mvar	8	A	A
L1	PAK214	PLE214	-29.0	36.5	-29.2	46.8	8 -0	.16	-0.9	11.1	17	112	134
L2	PAK214	KOZ211	-104.7 -	-14.2	-106.0	-2.2	1 -1	.33	-10.9	23.1	33	254	250
L3	PAK214	MIL211	116.8	37.7	114.6	43.4	4 -2	2.25	-18.5	24.2	40	295	315
L4	KOZ211	MIL211	126.9	24.7	122.9	32.4	4 - 3	.95	-32.4	40.2	34	305	327
L5	KOZ211	PLE214	130.8	29.6	129.2	33.2	2 -1	.54	-12.7	16.3	38	316	325
L6	KOZ411	MIL411	286.3	39.1	282.9	144.3	3 - 3	.40	-44.9	150.0	32	397	463
MIL-T1	MIL411	MIL211	122.8	74.3	122.5	64.2	2 -0	.30	-10.1	0.0	57	209	356
KOZ-T1	KOZ411	KOZ211	-86.3	20.5	-86.4	17.1	1 -0	.10	-3.4	0.0	35	122	207

Wyniki obliczeń metodą Warda-Halle'a w postaci graficznej przedstawia (Rys 5.2).

Rys 5.2. Wyniki obliczeń metodąWarda-Halle'a

Należy zwrócić uwagę, że metoda ta jest bardzo niestabilna, nawet dla sieci kilkudziesięciowęzłej proces iteracyjny jest często rozbieżny.

6. Metoda Gaussa-Seidla

Zależnością wyjściową jest równanie:

$$\underline{I}_{i} = \underline{Y}_{ii} \cdot \underline{U}_{i} + \sum_{j \in N_{i}} \underline{Y}_{ij} \cdot \underline{U}_{j}$$
(6.1)

Z zależności na moc pozorną oblicz się prąd:

$$\underline{I}_{i} = \frac{\underline{S}_{i}^{*}}{\underline{U}_{i}^{*}} = \frac{P_{i} - jQ_{i}}{\underline{U}_{i}^{*}}$$
(6.2)

i podstawia się do poprzedniego równania (6.1):

$$\frac{\underline{P_i - jQ_i}}{\underline{U}_i^*} = \underline{Y}_{ii} \cdot \underline{U}_i + \sum_{j \in N_i} \underline{Y}_{ij} \cdot \underline{U}_j$$
(6.3)

co daje

$$\frac{\underline{P}_{i} - j\underline{Q}_{i}}{\underline{\underline{U}}_{i}^{*}} - \sum_{j \in N_{i}} \underline{\underline{Y}}_{ij} \cdot \underline{\underline{U}}_{j} = \underline{\underline{Y}}_{ii} \cdot \underline{\underline{U}}_{i}$$
(6.4)

i otrzymujemy wzór iteracyjny:

$$\underline{U}_{i}^{(k+1)} = \frac{1}{\underline{Y}_{ii}} \cdot \left[\frac{P_{i} - jQ_{i}}{\underline{U}_{i}^{(k)*}} - \sum_{j \in N_{i}} \underline{Y}_{ij} \cdot \underline{U}_{j}^{(k)} \right]$$
(6.5)

6.1. Przykład obliczeń metodą Gaussa-Seidla

Weźmy pod uwagę tak jak w przykładzie obliczeń metodą Warda-Halle'a fragment sieci przykładowej z (*Rys.2.2*), z wyszczególnionym węzłem *PLE214* który jest przedstawiony jak na (*Rys 6.1*).

Rys 6.1 Zmiana obciążenia węzła PLE214

Jest to stan sieci odpowiadający zadanemu obciążeniu w węźle *PLE214* - moc jest (-280-j180)MVA. Załóżmy teraz, że obciążenie węzła *PLE214* uległo zmianie do (-100-j80)MVA. Korekcji napięcia w węźle *PLE214* dokonamy w oparciu o metodę Gausa-Seidla zgodnie ze wzorem (6.5).

$$\underline{U}_{i}^{(k+1)} = \frac{1}{\underline{Y}_{ii}} \cdot \left[\frac{P_{i} - jQ_{i}}{\underline{U}_{i}^{(k)*}} - \sum_{j \in N_{i}} \underline{Y}_{ij} \cdot \underline{U}_{j}^{(k)} \right]$$

Wiersz macierzy admitancyjnej węzłowej odpowiadającej węzłowi PLE214 jest:

PAK214 MIL211 MIL411 KOZ411 KOZ211 PLE214 PLE214 -0.008490 0.000000 0.000000 0.000000 -0.002931 0.011421 0.048514 0.000000 0.000000 0.000000 0.024033 -0.072309

Przyjęty wektor napięć węzłowych w kroku (k)

 $\underline{U}_{PLE214} = 228,80e^{-j2,0484} = (228,654 - j8,1782)kV$

 $\underline{U}_{KOZ211} = 245,000e^{j4,4953} = (244,246 + j19,2024)kV$

 $\underline{U}_{PAK214} = 240e^{j0} = (240,000 + j0,000)kV$

Oznaczenia:

$$\underline{I}_{PLE214} = \sum_{j \in N_i} \underline{Y}_{ij} \cdot \underline{U}_j^{(k)} \qquad \underline{I}_{PQ} = \frac{P_i - jQ_i}{\underline{U}_i^{(k)*}}$$

Obliczamy:

$$\underline{I}_{PLE214} = \underline{Y}_{PLE214,KOZ211} \cdot \underline{U}_{KOZ211}$$

$$+ \underline{Y}_{PLE214,PAK214} \cdot \underline{U}_{PAK214} =$$

$$= (-0,002931 + j0,024033) \cdot (244,246 + j19,2024)$$

$$+ (-0,008490 + j0,048514) \cdot (240,000 + j0,000) =$$

$$= (-1,1774 - 5,8137) + (-2,0376 + j11,6434) = (-3,2150 + j17,4570)kA$$

$$\underline{I}_{PQ} = \frac{P_i - jQ_i}{U_i^{(k)*}} = \frac{(-100) - j(-80)}{(228,654 + j8,1782)} = \frac{(-100) - j(-80) \cdot (228,654 - j8,1782)}{228,654^2 + 8,1782^2} = (-0,4243 + j0,3650)kA$$

$$I_{PQ} - I_{PLE214} = (-0.4433 + j0.3650) - (-3.2150 + j17.45709) = 2.7907 - j17.0920$$

$$\underbrace{U_{i}^{(k+1)}}_{i} = \frac{\underline{I}_{PQ} - \underline{I}_{PLE214}}{\underline{Y}_{ii}} = \frac{(2,7907 - j17,0920)}{(0,011421 - j0,072309)} = \frac{(2,7907 - j17,0920) \cdot (0,011421 + j0,072309)}{0,011421^{2} + 0,072309^{2}}$$

$$= (236,569 + j1,2287)kV$$

Nowa wartość napięcia U_{PLE214} :

$$\underline{U}_{PLE214}^{nowe} = 236,569 + j1,2287 = \sqrt{236,569^2 + 1,2287^2} \cdot e^{jarctg\left(\frac{1,238}{236,569}\right)} = \mathbf{236}, \mathbf{57}kV \cdot e^{j\mathbf{0},\mathbf{298}^0}$$

Wyniki obliczeń metodą Gaussa-Seidla otrzymane po dwudziestu trzech teracjach w postaci tekstowej są:

4.Bilan:	se węzło	we										
Węzeł	Typ Vz	Vi	Di	Pl	Ql	I	g	Qg	dP	dQ		
-	- kV	kV	stopnie	MW	Mvai		MM N	lvar	MW	Mvar		
MIL211	1 220	224.325	-7.749	-360	0.0 -14	40.0	0.0	0.0	-0.02	-0.	00	
MIL411	1 400	396.218	-4.239	-160	0.0 -	70.0	0.0	0.0	-0.02	0.	00	
PLE214	1 220	236.922	0.734	-100	3- 0.C	30.0	0.0	0.0	-0.01	0.	00	
KOZ211	2 245	245.000	5.846	. (0.0	0.0 4	450.0	39.0	-0.02	0.	00	
KOZ411	2 420	420.000	3.662	. (0.0	0.0 2	200.0	59.7	-0.00	0.	00	
PAK214	4 240	240.000	0.000	(0.0	0.0 -	-16.9	60.2	0.00	0.	00	
5.Przep	ływy moc	y w gałę:	ziach									
Gałąź	Pocz.	Kon.	Ppocz. Ç	pocz.	Pkońc	. Qkońc	c. c	lP dQ	Qład.	Obc.	Ipocz.	Ikońc.
-	-	-	MM	Mvar	MW	Mvaı	r N	W Mvar	Mvar	00	A	A
L1	PAK214	PLE214	-29.0	36.6	-29.2	46.8	3 -0.	16 -0.9	11.1	17	112	135
L2	PAK214	KOZ211	-104.7 -	14.1 .	-106.0	-2.0) -1.	33 -10.9	23.1	33	254	250
L3	PAK214	MIL211	116.8	37.7	114.6	43.4	4 -2.	25 -18.5	24.2	40	295	315
L4	KOZ211	MIL211	126.9	24.6	122.9	32.4	4 -3.	95 -32.4	40.2	34	305	327
L5	KOZ211	PLE214	130.8	29.6	129.2	33.2	2 -1.	54 -12.7	16.3	38	316	325
L6	KOZ411	MIL411	286.3	39.2	282.9	144.3	3 -3.	40 -44.9	150.0	32	397	463
MIL-T1	MIL411	MIL211	122.8	74.3	122.5	64.2	2 -0.	30 -10.1	0.0	57	209	356
KOZ-T1	KOZ411	KOZ211	-86.3	20.6	-86.4	17.1	L -0.	10 -3.4	0.0	35	122	207

Wyniki obliczeń metodą Gaussa-Seidla w postaci graficznej przedstawia (Rys 6.2).

Rys 6.2. Wyniki obliczeń metodą Gaussa-Seidla

Należy zwrócić uwagę, że metoda ta też jest niestabilna, dla sieci powyżej kilkudzieset węzłów proces iteracyjny jest często rozbieżny.